期刊文献+

一种求解双目标job shop问题的混合进化算法 被引量:3

A hybrid evolutionary algorithm for bi-objective job shop scheduling problems
下载PDF
导出
摘要 提出一种求解双目标job shop排序问题的混合进化算法.该算法采用改进的精英复制策略,降低了计算复杂性;通过引入递进进化模式,避免了算法的早熟;通过递进过程中的非劣解邻域搜索,增强了算法局部搜索性能.采用该算法和代表性算法NSGA-Ⅱ,MOGLS对82个标准双目标job shop算例进行优化对比,所得结果验证了该算法求解双目标job shop排序问题的有效性. Aiming at solving bi-objective job shop scheduling problems, a hybrid evolutionary algorithm is proposed. An improved elite duplication strategy is applied, which reduces computational cost of the algorithm. An escalating evolutionary strategy is introduced into the algorithm, which is designed to overcome premature convergence. Besides, by applying a variable neighborhood search strategy to achieve Pareto solutions during the population escalation, the algorithm's local search ability is enhanced. Numerical experiments, which employ the proposed algorithm, together with other two typical algorithms NSGA-Ⅱ and MOGLS, is made to solve 82 bi-objective job shop scheduling problems. The optimization results show the effectiveness of the algorithm proposed here on solving bi-objective job shop scheduling problems.
出处 《控制与决策》 EI CSCD 北大核心 2007年第11期1228-1234,共7页 Control and Decision
基金 国家自然科学基金项目(70771003 70521001) 新世纪优秀人才支持计划项目(NCET)
关键词 多目标优化 递进进化 JOB SHOP 进化算法 Multi-objective optimization Escalating evolution Job shop Evolutionary algorithm
  • 相关文献

参考文献17

  • 1Pinedo M.Scheduling-Theory,algorithms and systems[M].New Jersey:Prentice Hall,1995.
  • 2Nagar A,Haddock J,Heragu S.Multiple and bicriteria scheduling:A literature survey[J].European J of Operational Research,1995,81(1):88-104.
  • 3Tkindt V,Billaut J C.Multicriteria scheduling:Theory,models and algorithms[M].Berlin:Springer,2002.
  • 4谢涛,陈火旺,康立山.多目标优化的演化算法[J].计算机学报,2003,26(8):997-1003. 被引量:126
  • 5Brizuela C,Sannomiya N,Zhao Y.Multi-objective flow-shop:Preliminary results[C].The Proc of 1st Int Conf.Zurich,2001:443-457.
  • 6Murata T.Genetic algorithms for multi-objective optimization[D].Osaka:Osaka Prefecture University,1997.
  • 7Bagchi T P.Multiobjective scheduling by genetic algorithms[M].Boston:Kluwer Academic Publisher,1999.
  • 8Gen M,Cheng R W.Genetic algorithms and engineering design[M].New York:John Wiley & Sons,1996.
  • 9Cheng R W,Gen M,Tsujimura Y.A tutorial survey of job-shop scheduling problems using genetic algorithms-Part Ⅱ:Hybrid genetic search strategies[J].Computers and Industrial Engineering,1999,36(1):343-364.
  • 10Ceollo C A C,Pulido G T.A micro-genetic algorithm for multiobjective optimization[C].The Proc of 1st Int Conf on Evolutionary Multi-criteria Optimization.Zurich,2001:126-140.

二级参考文献45

  • 1Charnes A, Cooper W W. Management Models and Industrial Applications of Linear Programming, Volume 1. New York:John Wiley, 1961.
  • 2Ijiri Y. Management Goals and Accounting for Control. Amsterdan: North Holland, 1965.
  • 3Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design. Structural Optimization, 1992, 4 : 99 - 107.
  • 4Chen Y L, Liu C C. Multiobjective VAR planning using the goal-attainment method, IEE Proceedings on Generation,Transmission and Distribution, 1994,141 (3) :227 -232.
  • 5Coello C A C, Christiansen A D, Aguirre A H. Using a new GA- based multiobjective optimization technique for the design of robot arms. Robotica, 1998,16:401-414.
  • 6Fujita K, Hirokawa N, Akagi S, Kitamura S, Yokohata H.Multi-objective optimal design of automotive engine using genetic algorithm. In: Proceedings of DETC'98-ASME Design Engineering Technical Conferences, 1998.
  • 7Cvetkovic D, Parmee I C. Genetic algorithm-based multi-objective optimization and conceptual engineering design, Washington DC, 1999. 29-36.
  • 8Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-a comparative case study. In: Eiben A E.Back T, Schoenauer M, Schwefel H P eds. Parallel Problem Solving from Nature, Berlin, Germany: Springer, 1998. 292-301.
  • 9Knowles J, Corne D. The Pareto archived evolution strategy:A new baseline algorithm for multiobjective optimization. In:Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, 1999. 98-105.
  • 10Coello C A C, Christiansen A D. Two new GA- based methods for multiobjective optimization. Civil Engineering Systems,1998, 15(3) :207-243.

共引文献129

同被引文献69

  • 1崔逊学,林闯.一种基于偏好的多目标调和遗传算法(英文)[J].软件学报,2005,16(5):761-770. 被引量:23
  • 2蓝艇,刘士荣,顾幸生.基于进化算法的多目标优化方法[J].控制与决策,2006,21(6):601-605. 被引量:26
  • 3师瑞峰,周泓,上官春霞.混合递进多目标进化算法及其在flow shop排序中的应用[J].系统工程理论与实践,2006,26(8):101-108. 被引量:8
  • 4SAAD I, HAMMADI S, BORNE P, et al. Aggregative Approach for the Muhiobjective Optimization Flexible Job-Shop Scheduling Problems : Proceedings of 2006 International Conference on Service Systems and Service Management [ C ]. France : Universite de Technologie de Troyes,2006.
  • 5VIA A, DE SOUSA J P. Using Metaheuristics in Multiobjective Resource Constrained Project Scheduling [ J ]. European Journal of Operational Research ,2000,120:359 - 374.
  • 6HORN J, NAFPLOITIS N, GOLDBERG D E. A Niched Pareto Genetic Algorithm for Multiobjective Optimization [ C ]//Proceedings of the 1 st IEEE Conference on Evolutionary Computation. Piscataway, New Jersey:IEEE Service Center, 1994:82 - 87.
  • 7FONSECA C M, FLEMING P J. Genetic Algorithms for Muhiobjective Optimization : Proceedings of the 5th International Conference on Genetic Algorithms [ C]. San Mateo ,California, 1993.
  • 8MURATS T, ISHIBUCHI H, TANAKA H. Multi-Objective Genetic Algorithm and Its Application to Flowshop Scheduling [ J ]. Computers Industry and Engineering, 1996,30 (4) : 957 - 968.
  • 9ZITZLER E,THIELE L. Multiobjective Evolutionary Algorithms:A Comparative Case Study and the Strength Pareto Approach [ J]. IEEE Transaction on Evolutionary Computation, 1999,3:257 - 271.
  • 10DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II [ J ]. IEEE Transaction on Evolutionary Computation,2002,6(2) : 182 - 197.

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部