摘要
为研究金属螺旋弹簧的动态特性及动刚度对频率的响应,利用有限元方法,建立了弹簧有限元模型,计算了弹簧的稳态响应,分析了其幅频特性曲线,并提出弹簧刚度的等效算法。计算结果表明:弹簧的动刚度随着激振频率的增大总体趋势是增大的,但是在共振频率处,动刚度极小,低于静刚度,而在反共振频率处,动刚度极大,远高于静刚度;两种算法的刚度-频率曲线几乎重合,因此,金属弹簧确实存在显著的动态特性,采用多自由度系统等效弹簧系统是可行的。
In order to study the dynamic characteristics of metal helical spring and its dynamic stiffness response to driving frequency, a finite element model of the spring was set up by using FEM, its steady-state response was computed, its frequency-amplitude characteristic curve was analyzed, and an equivalent algorithm of its stiffness was proposed. Computation result shows that the dynamic stiffness of the spring increases with the increase of driving frequency in general tendency,it is minimal and smaller than the static stiffness of the spring corresponding to resonant frequency, however, it is maximal and greater than the static stiffness corresponding to anti-resonant frequency;the stiffness-frequency curves of finite element model and equivalent algorithm almost overlap, so the dynamic characteristic of the spring is remarkable, and the algorithm is feasible. 2 tabs, 9 figs, 10 refs.
出处
《交通运输工程学报》
EI
CSCD
北大核心
2007年第5期24-27,共4页
Journal of Traffic and Transportation Engineering
基金
国家自然科学杰出青年基金项目(50525518)
国家973计划项目(2007CB714701)
高等学校博士学科点专项科研基金项目(20040613006)
关键词
车辆工程
金属圆柱螺旋弹簧
动刚度
有限元法
vehicle engineering
metal helical spring
dynamic stiffness
finite element method