摘要
从实际应用出发,研究了椭圆曲线标量乘法算法的FPGA的实现。采用P1363推荐的GF(2163)上的Koblitz曲线,首先设计了一个精简指令集的微处理器IP核,利用此指令集编程实现标量乘法,最终实现的标量乘法需要8 830个ALUT和5 575个register,运行一次标量乘法的时间为184.52μs。与其他文献的标量乘法运算的硬件实现相比,实现的标量乘法运算在资源速度综合方面具有较大的优势。
In this paper, we study the implementation of the scalar multiplication algorithm by the FPGA from practical aspect. We adopt Koblitz curve on GF(2163) recommended by P1363 and module of microprocessor. There are 8,830 ALUTs and 5 575 registers to construct the structure of scalar multiplication,and its running time is 184.52 μs to multiply. Speed of the scalar multiplication takes advantage position comparatively with same logic resource in domestic or abroad at present.
出处
《现代电子技术》
2007年第22期32-35,共4页
Modern Electronics Technique
基金
2004年广州市属高校科技计划项目(2003)
广东省科技计划项目(2005B10101024)
关键词
椭圆曲线密码体制
标量乘法
IP核
精简指令集
FPGA
elliptic curve cryptosystem
scalar multiplication
IP core
reduced instruction set computing
FPGA