期刊文献+

基于增加光电子积分时间的磁镜装置研究 被引量:1

Study of the Magnetic Mirror Device to Enhance the Photoelectron's Accumulation Time
原文传递
导出
摘要 阐述了提高微光成像系统低照度探测极限的本质是需保证成像系统对光信号足够的积累时间,从理论上指出降低CCD温度实现低照度探测的局限性和实现技术的复杂性后,提出在光阴极与光电子接收器(屏靶)之间耦合一个磁镜装置(即微通道电子瓶板结构)作为一种新的光电子接收器,即可有效保证图像信号的积分时间,提高成像系统的探测信噪比,达到拓展微光成像系统低照度探测极限的目的。论证了磁镜场的物理机理,并用计算机模拟显示出了预期的结果。该方案在常温下能实现当前微光成像系统低温探测灵敏度极限10-11lx的目标。 The essential factors of enhancing the detecting limitation of low-light imaging system are enough accumulation time to the light signal. After the principle is demonstrated for the accumulation time of CCD to low temperature, it shows the localization and complexity. So, we put forward a device for promoting the low-light level imaging system' detection limit in which a magnetic mirror structure is coupled between the photocathode and the photoelectron acceptor (screen target), viz. this is the method of microchannel electron vase plate. It can be used in the small-scale integration imaging system respectively to enhance the detection limit of low-light level by the new way. The new photoelectron acceptor can assure the image signal's accumulation time. By this new way, the signalto-noise of imaging system can be improved and detection limit of low-light imaging system is expanded. The physics principle of the field of magnetic mirror is demonstrated and the simulation values showed the expected result sensitive detection limit 10^-11 lx can be realized at the room temperature instead low temperature.
出处 《光学学报》 EI CAS CSCD 北大核心 2007年第11期1973-1979,共7页 Acta Optica Sinica
基金 陕西省自然科学基金研究项目(2006A08) 西安理工大学创新基金和B类基金(108-210605)资助课题
关键词 成像系统 微光成像 磁镜 探测极限 微通道电子瓶板 imaging systems low-light imaging magnetic mirrors detection limit microchannel electronic vase plate
  • 相关文献

参考文献13

二级参考文献33

共引文献57

同被引文献16

  • 1姚若河,吴为敬,张晓东,刘玉文.磁镜场约束中粒子运动的数值计算[J].真空科学与技术学报,2004,24(2):105-108. 被引量:7
  • 2邹继军,陈怀林,常本康,王世允.GaAs光电阴极表面电子逸出概率与波长关系的研究[J].光学学报,2006,26(9):1400-1403. 被引量:11
  • 3ZHOU Z, PAIN B, FOSSUM E R. Frame-transfer CMOS active pixel sensor with pixel binning[J]. IEEE Trans on Electron Devices, 1997, 44(6): 1764-1768.
  • 4ASUNDI A, SAJAN M R. Dynamic recording using a TDI camera[J]. Appl Opt, 1994, 33(34): 8102-8105.
  • 5ROBERT K R. Sub-possion statistics observed in an electronically shuttered and back-Illuminated CCD pixel[J]. IEEE Trans on Electron Devices, 1997, 44(1): 69-73.
  • 6WILLIAMS G M, RHEIHEIMER A L, AEBI V W, et al. Electron-bombarded back-illuminated CCD sensors for low-light-level imaging applications[C]. SPIE, 1995, 2415: 211-235.
  • 7EMCCD: http://www.emccd.com/.
  • 8SAARA K, HEIKKI H, JOUKO K T. Laser-induced plasma spectroscopy to as low as 130 nm when a gas-purged spectrograph and ICCD detection are used[J]. Appl Opt, 2003, 42(30): 6036-6039.
  • 9郜海阳, 唐远河, 刘锴, 等. 一种常温下提高微光成像系统探测性能的像增强器[P].发明专利号: ZL200810150762.4, 授权日:2010.2.4.
  • 10TANG Yuan-he, GAO Hai-yang, DU Yu-fei, et al. The electron′s velocity direction through the magnetic mirror field for the low-light imaging system[C]. SPIE, 2008, 6621(21): 1-11.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部