期刊文献+

应用实时荧光定量PCR方法检测血小板制品细菌污染 被引量:7

The real-time fluorescence quantitative PCR assay for detection of bacterial contamination in platelet concentrates
下载PDF
导出
摘要 目的应用实时荧光定量PCR方法检测血小板制品中细菌的探讨。方法选取金黄色葡萄球菌及大肠埃希氏杆菌,用改良的Chelex-100法抽提细菌基因组DNA,进行荧光定量PCR检测。并应用过滤法去除反应体系中潜在的细菌及其基因组DNA污染。结果针对16srRNA基因保守序列进行扩增的荧光定量PCR方法具有较高的特异性和灵敏度,与人类淋巴细胞及病毒等的基因组无交叉反应。在金黄色葡萄球菌检测中,应用过滤法后最低含菌量组与阴性对照组Ct值有极显著差异(P<0.001)。该方法对金黄色葡萄球菌的最低检出量为0.3CFUs/PCR,与阴性对照Ct值有显著差异(P<0.01),在大肠埃希氏杆菌中该法可检测出0.1CFUs/PCR,与阴性对照Ct值有显著性差异(P<0.01)。结论改良Chelex-100法抽提细菌基因组及后续的荧光定量PCR分析用于检测血小板制品中的细菌污染,检测实验缩短到3-4h,操作简单,灵敏性高,特异性好,为在临床标本大规模检测中的应用提供理论基础和实验数据。 Objective To establish a real-time PCR assay to detect bacterial contamination in plateler concentrates (PCs). Methods PCs were spiked with serial dilutions of Staphylococcus aureaus and Eschetichia coil, and the bacterial genomic DNA was isolated by modified Chelex-100 method and then quantitatively detected by Tagman realtime PCR. Filtration was performed to avoid contamination from other bacterial DNA in the reagents of extraction kit as well as the PCR mixture. Results The real-time PCR targeting conservative 16S rRNA gene showed high sensitivity and specificity in detecting bacterial contamination in PCs, and no cross-reaction with human genomic DNA and viruses was found. The Ct value of the lowest bacterial dose groups after filtration in both S. aureaus and E. coli were statistically different from the negative controls, with a minimal detection quality of 0.3CFUs/PCR for S. aureaus, and 0.1CFUs/PCR for E. coll. , respectively. Conclusion The modified Chelex-100 method to extract bacterial genomic DNA and the subsequent real-time PCR are convenient, sensitive and specific, and may be applied to the large scale clinical detection of bacterial contamination in PCs.
出处 《中国输血杂志》 CAS CSCD 2007年第5期368-371,共4页 Chinese Journal of Blood Transfusion
关键词 血小板制品 改良Chelex-100法 实时荧光定量PCR 细菌污染 Platelet concentrates Modified Chelex-100 method Real-time fluorescence quantitative PCR Bacterial contamination
  • 相关文献

参考文献12

  • 1Schreiber GB, Busch MP, Kleinman SH, et al. The risk of transfusion-transmitted viral infecti- ons. The Retrovirus Epidemiology Donor Study[J]. N Engl J Med, 1996, 334(26):1685--1690
  • 2Blajchman MA, Goldman M, Baeza F. Improving the bacteriological safety of platelet transfusion[J]. Transfus Med Rev, 2004, 18(1):11--24
  • 3Dreier J, Stormer M, Kleesiek K. Two Novel Real-Time Reverse Transcriptase PCR Assays for Rapid Detection of Bacterial Contamination in Platelet Concentrates[J]. J Clin Microbiol, 2004 ,42(10): 4759--4764
  • 4王荣山,吴亦栋,尚世强,杨祖卿,杜立中.实时荧光定量PCR检测细菌方法的建立及其临床应用[J].中华围产医学杂志,2005,8(4):242-245. 被引量:15
  • 5Nadkarni MA, Martin FE, Jacques NA, et al. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set[J]. Microbiology. 2002, 148 (Pt1) : 257--266
  • 6Brecher ME, Hay SN, Rothenberg SJ. Monitoring of apheresis platelet bacterial contamination with an automated liquid culture system: a university experience [J]. Transfusion, 2003, 43(7): 974--978
  • 7Mohammadi T, Pietersz RNI, Scholtalbers LAH, et al. Optimal sampling time after preparation of platelet concentrates for detection of bacterial contamination by quantitative real-time polymerase chain reaction[J]. Vox Sang, 2005, 89(4): 208-- 214
  • 8te Boekhorst PAW, Beckers EAM, Vos MC, et al. Clinical significance of bacteriologic screening in platelet concentrates [J]. Transfusion, 2005, 45(4): 514--519
  • 9Mohammadi T, Pietersz RNI, Vandenbroucke-Graμls CMJE, et al. Detection of bacteria in platelet concentrates: comparison of broad-range real-time 16S rDNA PCR and automated culturing[J]. Transfusion, 2005, 45(5) :731--736
  • 10Mohammadi T, Reesink HW, Vandenbroucke-Graμls CMJE, et al. Optimization of Real-Time PCR Assay for Rapid and Sensitive Detection of Eubacterial 16S Ribosomal DNA in Platelet Concentrates[J]. J Clin Microbiol, 2003, 41 (10) :4796--4798

二级参考文献13

  • 1Nadkarni MA, Martin FE,Jacques NA, et al. Determination of bacterial load by real-time PCR using a broad-range(universal) probe and primers set. Microbiology, 2002,148:257-266.
  • 2Lieu TA, Schwartz JS, Jaffe DM, et al. Strategies for diagnosis and treatment of children at risk for occult bacteremia: clinical effectiveness and cost-effectiveness. J Pediatr, 1991,118 : 21-29.
  • 3Downs SM, McNutt RA, Margolis PA. Management of infants at risk for occult bacteremia: a decision analysis. J Pediatr, 1991,118:11-20.
  • 4Shang S, Chen Z, Yu X. Detection of bacterial DNA by PCR and reverse hybridization in the 16S rRNA gene with particular reference to neonatal septicemia. Acta Paediatr, 2001,90:179-183.
  • 5Pas SD, Fries E, De Man RA, et al. Development of a quantitative real-time detection assay for hepatitis B virus DNA and comparison with two commercial assays. J Clin Microbiol, 2000,38:2897-2901.
  • 6Bieche I, Onody P, Laurendeau I, et al. Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications . Clin Chem,1999,45:1148-1156.
  • 7MACKAY I M.Real-time PCR in the microbiology laboratory[J].Clin Microbiol Infect,2004,10(3):190 -212.
  • 8SWEET D,LORENTE M,VALENZUELA A,et al.Increasing DNA extraction yield from saliva stains with a modified Chelex method[J].Forensic Sci Int,1996,83(3):167 -177.
  • 9STEIN A,RAOULT D.A simple method amplification of DNA from paraffin-embedded tissues[J].Nucleic Acids Res,1992,20(19):5237-5238.
  • 10EDEN P A,SCHMIDT T M,BLAKEMORE R P,et al.Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA[J].Int J Syst Bacteriol,1991,41(2):324 -325.

共引文献24

同被引文献61

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部