期刊文献+

基于K均值聚类的快速分形编码方法 被引量:8

Fast Fractal Coding Technique Based on K-mean Clustering
下载PDF
导出
摘要 针对目前分形图像压缩存在的编码时间过长问题,提出了使用K均值聚类对编码过程进行加速的方法,其中聚类向量采用图像块的正规化特征向量以保证聚类的精度,并通过用部分失真搜索来完成传统K均值聚类中最耗时的最近邻搜索过程以提高聚类速度。进一步,通过结合均值图像建库、去平坦块等技巧,得到了一种快速、可调的分形编码方法。实验结果表明,相对于全局搜索,所提方法大幅地提高了编码速度和压缩比,而解码质量只略有下降。 Long coding time is the main problem in image compression based on Fractal at present, mainly due to its heavy computation of searching the best-match domain block for each range block. In this paper, a fast K-mean clustering algorithm is proposed firstly using Partial Distortion Search to replace the time-consuming Nearest Neighbor Search process in traditional K-mean clustering algorithm. Then the K-mean clustering algorithm is used to speed up the coding: scheme the domain blocks and search the best-match block for each range block in some nearest neighbors from some nearest clusters. Furthermore, by combining other techniques such as excluding planar blocks and building domain pool from an averaged image, a fast and adjustable fractal coding scheme is obtained. Experimental results indicate that comparing to exhaustive search, the proposed method improves the coding speed and compression ratio greatly with slight quality degradation of decoded image.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第4期586-591,共6页 Journal of Image and Graphics
基金 陕西省自然科学研究项目(2002A20)
关键词 K均值聚类 部分失真搜索 最近邻搜索 分形图像压缩 K-mean clustering, partial distortion search, nearest neighbor search, fractal image compression
  • 相关文献

参考文献11

  • 1Fisher Y.Fractal Image Compression-Theory and Application[M],New York,Springer-Verlag,1994.
  • 2Hurtgen B,Stiler C.Fast hierarchical codebook search for fractal coding of still images[A].In:Visual Communications and PACS for Medical Applications[C],Berlin,Germany,1993,1977:397 - 408.
  • 3Mario Polvere,Michele Nappi.Speed-up in fractal image coding:comparison of methods[J].IEEE Transactions on Image Processing,2000,9(6):1002 - 1009.
  • 4李杰,付萍,刘金国.基于复合分类的快速分形图像压缩编码[J].计算机辅助设计与图形学学报,2002,14(4):348-350. 被引量:11
  • 5Lototskiy R V.Images fractal compression optimization by means of artificial Kohonen neural networks[J].Journal of Automation and Information Sciences,2003,35 (1):50 - 60.
  • 6Tong C S,Pi M.Fast fractal image encoding based on adaptive search[J].IEEE Transactions on Image Processing,2001,10 (9):1269 - 1277.
  • 7[日]荻原将文,山口亨,古荻隆嗣著.人工神经网络与模糊信号处理[M].马炫译,北京:科学出版社,2003:38-39.
  • 8Bei C D,Grey R M.An Improvement of the minimum distortion encoding algorithm for vector quantization[J].IEEE Transaction on Communications,1985,33(10):1132-1133.
  • 9Chen S H,Pan J S.Fast search algorithm for VQ-based recognition of isolated word[J].IEE Proceedings-I,1989,136(6):391 -396.
  • 10Saupe D.Fractal image compression via nearest neighbor search[A].In:Proceedings of NATO ASI on Fractal Image Encoding and Analysis[C],Trondheim,Norway,1995:1 -25.

二级参考文献3

共引文献10

同被引文献84

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部