期刊文献+

基于双正交多小波变换的多光谱与全色图像融合研究 被引量:6

Fusion of Multispectral and Panchromatic Images Based on Biorthogonal Multiwavelet Transform
下载PDF
导出
摘要 针对多光谱与全色图像融合中存在的光谱扭曲问题,提出了一种利用双正交多小波进行多分辨率分析,并结合平均与选择法处理小波高频系数的融合算法。该算法首先对已配准的多光谱图像进行IHS变换,然后分别对变换得到的强度分量I与全色图像进行双正交多小波分解,为增强融合图像的空间信息,对分解得到的高频系数利用平均与选择相结合的方法来确定,低频系数则通过邻域方差准则得到。最后由新的小波低频和高频系数重构并进行IHS逆变换得到融合图像。实验结果表明,该方法可以有效减少光谱扭曲,并提高图像的空间分辨率,保留图像中的边缘细节。 In order to solve the problem of spectral distortion existed in the panchromatic and muhispectral images fusion algorithm, a novel algorithm based on the biorthogonal muhiwavelet transform and the method of combination of average and selection is presented. First it decomposes the intensity components which obtained by IHS transform of the registered multispectral image and biorthogonal multi-wavelet transform of the panchromatic image. Then the method of combination of average and selection and the local variance rule is separately adopted to obtain new high frequency and low frequency coefficients to enhance the edge information of fused images. Finally these images are reconstructed with composite wavelet coefficients and by performing the inverse IHS transform. The experimental results show that this algorithm can improve the spatial resolution of multispectral image while reducing spectral distortion and still maintaining its edge detail.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第4期684-690,共7页 Journal of Image and Graphics
基金 国家"863"项目(2004AA783052)
关键词 图像融合 双正交多小波 多分辨率分析 平均与选择 边缘细节 image fusion, biorthogonal multi-wavelet, muhiresolution analysis, average and selection, edge detail
  • 相关文献

参考文献16

  • 1Carper J,Lillesand T M,Kiefer R W.The use of intensity-huesaturation transforms for merging SPOT panchromatic and multispectral image data[J].Photogramm Eng Remote Sens,1990,56(5):459 -467.
  • 2Chavez P S,Stuart J,Sides C,et al.Comparison of three different methods to merge multiresolution and multispectral data:Landsat TM and SPOT panchromatic[J].Photogramm Eng Remote Sens,1991,57 (3):259 - 303.
  • 3Yéson H,Besnus Y,Polet J.Extraction of spectral information from landsat TM data and merger with SPOT panchromatic imagery-A contribution to be study of geological structures[J].ISPRS Journal of Photogrammetry and Remote Sensing,1993,48 (5):2336.
  • 4Chavez P S.Digital merging of Landsat TM and digitized NHAP data for 1:24.000 scale image mapping[J].Photogramm Eng Remote Sens,1986,52(10):1637 - 1646.
  • 5Ranchin T,Wald L.Fusion of high spatial and spectral resolution images:The ARSIS concept and its implementation[J].Photogramm Eng Remote Sens,2000,66(1):49 -61.
  • 6Aiazzi B,Alparone L,Baronti S,et al.Context-driven fusion of high spatial and spectral resolution images based on oversampled multi-resolution analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40 (10):2300 - 2312.
  • 7Ranchin T,Aiazzi B,Alparone L,et al.Image fusion--The ARSIS concept and some successful implementation schemes[J].ISPRS J Photogramm Remote Sens,2003,58:4 - 18.
  • 8陈豪,俞能海,刘政凯,张荣.面向提高图像分辨率的遥感数据融合新算法[J].软件学报,2001,12(10):1534-1539. 被引量:9
  • 9María González-Audícana,José Luis Saleta,Raquel García Catalán,et al.Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(6):1291 - 1299.
  • 10Shi W Z,Zhu C Q,Zhu C Y,et al.Multi-bandwavelet for fusing SPOT panchromatic and multi-spectral images[J].Photogramm Eng Remote Sens,2003,69(5):513 - 520.

二级参考文献15

  • 1焦李成.神经网络的应用与实现[M].西安电子科技大学出版社,1995..
  • 2何国金,中国图象图形学报,1999年,4卷,9期,744页
  • 3贾永红,现代应用药学,1998年,13卷,1期,46页
  • 4焦李成,神经网络的应用与实现,1995年
  • 5Pohl C, Genderen J L. Multisensor image fusion in remote sensing: concepts, methods and applications[J]. International Journal of Remote Sensing, 1998,19(5) : 823-854.
  • 6Burt P T, Adelson E H. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications. 1983,31(4): 532-540.
  • 7LI H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 1995,57(3) :235-245.
  • 8Mallat S G. A: theory for multiresolution signal decomposition: The wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7):674-693.
  • 9Geronimo J S, Hardin D P, Massopust P R. Fractal functions and wavelet expansions based on several functions[J]. Journal of Approximation Theory, 1994,78(3) :373-401.
  • 10Strela V, Hellers P N, Strang G, et al. The application of multiwavelet filter banks to signal and image process:ng [ J].IEEE Transactions on Image Processing, 1999,8(4):548-563.

共引文献48

同被引文献54

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部