期刊文献+

基于变异的迭代sIB算法 被引量:5

Iterative sIB Algorithm Based on Mutation
下载PDF
导出
摘要 IB方法使用源变量和相关变量的联合概率分布对源变量进行最大化压缩,使压缩变量最大化地保存相关变量的信息.连续IB算法(sIB)是一种较好的、应用较多的IB算法之一,但该算法存在效率低、优化不充分等问题.为了解决sIB在应用中存在的这些问题,提出了一种基于变异的迭代sIB算法(isIB).isIB算法首先从相关实验中选取合理的变异率;基于该变异率,该算法从sIB算法所产生的初始解向量中随机选取相应比例的位置,对其中的类标号进行随机变异并优化;再通过多次迭代获得了相应的优化解.实验表明在数据集相同、基本sIB算法调用次数相同的条件下,isIB算法相对于sIB算法具有运行效率高、解更优化的特点. IB method employs the joint probability distribution between the source variable and the relevant variable to maximally compress the source variable, such that the middle compression variable can maximally save the information about the relevant variable. As a result, this method gives birth to several effective iterative algorithms, in which, the sequential IB algorithm (slB) is one of the better and widely applied IB algorithms. But this algorithm also has some limits, such as, low efficiency and insufficient optimization, etc. For the sake of solving these problems of the slB algorithm discovered in applications, an iterative slB algorithm (islB) based on mutation method is proposed here. Firstly, relevant experiments for selecting reasonable mutation rate are conducted. Based on this rate, the islB algorithm chooses random proportional positions from the initial solution vector resulting from a seeding slB algorithm, and randomly mutates the corresponding mapping relation from these chosen positions to the clustering labels. After getting the initial solution, the islB algorithm optimizes it iteratively. The experimental results on the benchmark data sets indicate that the proposed isIB algorithm outperforms the sIB algorithm in both the accuracy and the efficiency.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第11期1832-1838,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(600332020 60674001)~~
关键词 IB方法 SIB算法 变异 迭代 互信息 IB method slB algorithm mutate iteration mutual information
  • 相关文献

参考文献16

  • 1N Tishby,F Pereira,W Bialek.The information bottleneck method[C].The 37th Allerton Conf on Communication,Control and Computing,Allerton House,USA,1999
  • 2N Slonim.The information bottleneck:Theory and application:[Ph D dissertation][D].Jerusalem:The Hebrew University of Jerusalem,2002
  • 3N Slonim,N Tishby.Agglomerative information bottleneck[C].In:Proc of Conf on Advances in Neural Information Processing Systems.Cambridge:MIT Press,1999.617-623
  • 4N Slonim,N Friedman,N Tishby.Unsupervised document classification using sequential information maximization[C].In:Proc of the 25th Ann Int'l ACM SIGIR Conf on Research and Development in Information Retrieval.New York:ACM Press,2002.129-136
  • 5N Slonim,N Tishby.Document clustering using word clusters via the information bottleneck method[C].The 23rd Ann Int'l ACM SIGIR Conf,Athens Greece,2000
  • 6N Slonim,N Tishby.The power of word clusters for text classification[C].The 23rd European Colloquium on Information Retrieval Research,Darmstadt,2001
  • 7R Bekkerman,R El-Yaniv,Y Winter,et al.On feature distributional clustering for text categorization[C].SIGIR,New Orleans,2001
  • 8J Goldberger,H Greenspan,S Gordon.Unsupervised image clustering using the information bottleneck method[C].The Annual Symp for Pattern Recognition of the DAGM,London,2002
  • 9S Gordon,H Greenspan,J Goldberger.Applying the information bottleneck principle to unsupervised clustering of discrete and continuous image representations[C].The 9th Int'l Conf on Computer Vision (ICCV),Nice,France,2003
  • 10J Goldberger,S Gordon,H Greenspan.Unsupervised image-set clustering using an information theoretic framework[J].IEEE Trans on Image Processing (IEEE-IP),2005,15(2):449-458

同被引文献80

  • 1叶阳东,刘东,贾利民,LI Gang.一种自动确定参数的sIB算法[J].计算机学报,2007,30(6):969-978. 被引量:5
  • 2N Tishby, F Pereira, W Bialek. The information bottleneck method[ A] .Proceedings of 37th Allerton Conference on Communication, Control and Computing[ C]. 1999. 368- 377.
  • 3N Slonim, N Friedman, N Tishby. Unsupervised document classification using sequential information maximization[ A ]. Proceedings of the 25th Ann. Int. ACM SIGIR Conf. on Research and Development in Information Retrieval [ C ]. 2002. 129 - 136.
  • 4N Slonim, N Tishby. Document clustering using word clusters via the information bottleneck method[ A]. Proceedings of 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval [ C ]. Athens, Greece, 2000.208 - 215.
  • 5J Goldberger, S Gordon, H Greenspan. Unsupervised image-set clustering using an information theoretic framework[ J]. IEEE Transactions on Image Processing, 2006,5 (2) : 449 - 458.
  • 6M Gorodetsky. Methods for discovering semantic relations between words based on co-occurrence patterns in corpora[ D ]. School of Computer Science and Engineering, Hebrew university, Jerusalem, 2002.
  • 7Winston H Hsu, Lyndon S Kennedy, Shih-Fu Chang. Video search remnking via information bottleneck principle[ A]. Proceedings of ACM International Conference on Multimedia[ C]. Santa Barbara, CA, USA, 2006.35 - 44.
  • 8N Slonim. The information bottleneck: Theory and Application [ D ]. The Hebrew University of Jerusalem, Jerusalem, Israel,2002.
  • 9N Slonim, N Tishby. Agglomerative information bottleneck [ A]. Proceedings of Advances in Neural Information Processing Systems (NIPS-2000) [ C ]. 1999, vol. 12.617 - 623.
  • 10J Peltonen, J Sinkkonen, S Kaski. Sequential information bottleneck for finite data[ A]. Proceedings of 21st International Conference on Machine Learning[ C]. Madison, USA, 2004. 647 - 654.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部