期刊文献+

一种基于边缘分布估计的多目标优化算法 被引量:3

A Multi-Objective Optimization Algorithm Based on Marginal Distribution Estimation
下载PDF
导出
摘要 该文提出了一种基于边缘分布估计的多目标优化算法,通过在每一进化代中估计较优个体的边缘概率分布来引导算法对Pareto最优解的搜索。通过与基于拥挤机制的多样性保持技术、基于非支配排序的联赛选择、精英保留等技术的有机结合,使得算法在具有良好收敛性能的同时,具有很好的维持群体多样性的能力。通过一组典型测试函数实验对该算法的性能进行了分析,并与NSGA-II、SPEA、PAES等知名多目标优化算法进行了比较,结果表明该文算法收敛速度较快,且得到的非支配解集分布均匀,适合于复杂多目标优化问题的求解。 A new multi-objective optimization algorithm based on marginal distribution estimation is proposed, in which marginal probability distribution of the selected better individuals is estimated and is used to guide the search of Pareto optimal solutions of the multi-objective optimization problems. Combined with non-dominant ranking, diversity preserving technique based on crowding mechanism, tournament selection based on non-dominant ranking, and elitist strategy, the algorithm achieves a good balance between convergence and diversity. A set of typical test functions are used to evaluate the performance of the proposed algorithm, and comparison is made between some well-known multi-objective optimization algorithms, i.e. NSGA-II, SPEA, PAES. The experimental results show that the proposed algorithm can achieve a good balance between convergence and diversity, and is suited to complex multi-objective problems.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第11期2683-2687,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60401015 60572012) 安徽省自然科学基金(050420201)资助课题
关键词 多目标优化 边缘分布估计 非支配解 多样性 Multi-objective optimization Marginal distribution estimation Non-dominated solution Diversity
  • 相关文献

参考文献10

  • 1Fonseca C M and Fleming P J. Genetic algorithms formultiobjective optimization: formulation , discussion andgeneration[C]. Proceedings of the 5th International Conference on Genetic Algorithms, San Mateo, California, 1993: 416-423.
  • 2Horn J and Nafpliotis N. Multiobjective optimization using the niched Pareto genetic algorithm[R]. USA: IlliGAL Report 93005, 1993.
  • 3Srinivas N and Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2 (3): 221-248.
  • 4Zitzler E, Deb K, and Thiele L.. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8 (2):173-195.
  • 5Deb K, Pratap A, and Agarwal T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 6Pelikan M, Goldberg D E, and Lobo F. A survey of optimization by building and using probabilistic models[R]. IlliGAL Tech. Rep. 99018, 1999.
  • 7Mtlhlenbein H and Paaβ G. From recombination of genes to the estimation of distributions I. Binary parameters[C]. Parallel Problem Solving from Nature PPSN IV, 1996: 178-187.
  • 8Pelikan M, Goldberg D E, and Cantu-Paz E. BOA: The Bayesian optimization algorithmp[C]. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), 13-17 July 1999, Orlando, Florida, USA, 1999, Vol I: 525-532.
  • 9Larranaga P, Etxeberria R, Lozano J A, and Pena J M. Optimization by Learning and Simulation of Bayesian and Gaussian Networks[R]. Dept. Comput. Sci. Artific. Intell., Univ. Basque Country, Tech. Rep. EHUKZAA-IK-4/99, 1999.
  • 10Mtihlenbein H, and Paaβ G. From recombination of genes to the estimation of distributions I. Binary parameters. In Proc. 5th Parallel Problem Solving from Nature(PPSN V), Amsterdam, The Netherlands, September 27-30, 1998, LNCS 1141: 178.

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部