期刊文献+

基于辅助变量粒子滤波的空对海BO-TMA的研究 被引量:5

Research on Air-to-Sea Bearing-Only TMA by Auxiliary Variable Particle Filtering
下载PDF
导出
摘要 论文探讨了TMA(目标运动分析)中基本的非线性估计问题;介绍了粒子滤波(PF)的基本思想和辅助变量PF(AVPF)的基本算法,特别针对空对海单站只测方位TMA(BO-TMA)问题应用AVPF和EKF(扩展卡尔曼滤波)进行了对照研究;建立了问题的离散非线性滤波估计模型;设计了典型的应用场景;给出了Monte Carlo仿真运行结果;表明AVPF具有更高的估计精度、更好的收敛特性和滤波一致性。 In comparison with the Extended Kalman Filtering (EKF) algorithm, the Auxiliary Variable Particle Filtering (AVPF) algorithm is exploited in this paper to solve tile problem of TMA based on Bearing-Only measurements (BO-TMA). Firstly, the problem of nonlinear filtering is identified in nature as the groundwork embedded in TMA. The PF (Particle Filtering) and the AVPF algorithms are then introduced, including their design consideration and elements of algorithms. Particular attention is paid to the problem of single observer air-to-sea BO-TMA. The discrete-time models are formulated pertinent to the nonlinear filtering problem and a typical scenario is depicted. The contrast results of Monte Carlo simulations between the AVPF and EKF have demonstrated that AVPF is more feasible to the air-to-sea BO-TMA by virtue of its favorable consistency with higher accuracy and better convergence.
机构地区 电子工程学院
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第11期2734-2737,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60702015)资助课题
关键词 递推非线性滤波 扩展卡尔曼滤波 粒子滤波 辅助变量粒子滤波 只测方位目标运动分析 Recursive nonlinear filtering Extended Kalman filtering Particle filtering Auxiliary variable particle filtering Bearing-only target motion analysis
  • 相关文献

参考文献10

  • 1Bar-Shalom Y, Li X R, and Kirubarajan T. Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and Software [M]. New York: John Wiley & Sons, 2001:373-374, 381-395, 99, 268-275.
  • 2Kushner H J. Approximations to optimal nonlinear filters . [J]. IEEE Trans. on Automat. Contr., 1967, 12(10): 546- 556.
  • 3Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory [M]. N J: Prentice Hall, 1993:449-452, 344-350.
  • 4Mathematical Society of Japan. Encyclopedic Dictionary of Mathematics (2^nd ed.) [M]. Cambridge, Massachusetts, and London: The MIT Press, 1986: 1754, 1449.
  • 5Doucet A, Godsill S, and Andrieu C. On sequential Monte Carlo methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10(3): 197-208.
  • 6Arulampalam M S, Maskell S, and Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Trans. on Signal Processing, 2002, 50 (2): 174-188.
  • 7Pitt M and Shephard N. Filtering via simulation: Auxiliary particle filters [J]. J. Amer. Statist. Assoc., 1999, 94(446): 590-599.
  • 8Gordon N J, Salmond D J, and Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEE Proc.-F, 1993, 140 (2): 107-113.
  • 9Carpenter J, Clifford P, and Fearnhead P. Improved particle filter for nonlinear problems [J]. IEE Proc. Radar, Sonar and Navigation, 1999, 146(1): 2-7.
  • 10Li X R and Jilkov V P. Survey of maneuvering target tracking, part I: dynamic models [J]. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(4): 1333 -1364.

同被引文献41

  • 1胡振涛,刘先省.一种实用的数据融合算法[J].自动化仪表,2005,26(8):7-9. 被引量:25
  • 2邓小龙,谢剑英,郭为忠.Bayesian target tracking based on particle filter[J].Journal of Systems Engineering and Electronics,2005,16(3):545-549. 被引量:10
  • 3程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 4杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 5李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 6LI X R, JILKOV V E Survey of maneuvering target tracking part I: dynamic models[J]. IEEE Trans. on Aerospace and Electronic System, 2003,39(4): 1333-1364.
  • 7GORDON N J, SALMOND D J, SMITH A F M. A novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEEE Proceedings on Radar and Signal Processing, 1993,140(2):107-113.
  • 8ARULAMPALAM S, MASKELL S. A tutorial on particle filters for no-line/no-Gaussian Bayesian tracking[J]. IEEE Transactions of Signal Processing, 2002,50(2): 174-188.
  • 9JAYESH H K, PETER M D. Gaussian sum particle filtering[J]. IEEE Transactions on Signal Processing. 2003,51 (10):2602-2612.
  • 10DJURIC P M, KOTECHA J H, et al. Particle filtering[J]. IEEE Signal Processing Magazine, 2003,20(5): 19-38.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部