期刊文献+

FUZZY PRINCIPAL COMPONENT ANALYSIS AND ITS KERNEL-BASED MODEL 被引量:4

FUZZY PRINCIPAL COMPONENT ANALYSIS AND ITS KERNEL-BASED MODEL
下载PDF
导出
摘要 Principal Component Analysis(PCA)is one of the most important feature extraction methods,and Kernel Principal Component Analysis(KPCA)is a nonlinear extension of PCA based on kernel methods.In real world,each input data may not be fully assigned to one class and it may partially belong to other classes.Based on the theory of fuzzy sets,this paper presents Fuzzy Principal Component Analysis(FPCA)and its nonlinear extension model,i.e.,Kernel-based Fuzzy Principal Component Analysis(KFPCA).The experimental results indicate that the proposed algorithms have good performances. Principal Component Analysis (PCA) is one of the most important feature extraction methods, and Kernel Principal Component Analysis (KPCA) is a nonlinear extension of PCA based on kernel methods. In real world, each input data may not be fully assigned to one class and it may partially belong to other classes. Based on the theory of fuzzy sets, this paper presents Fuzzy Principal Component Analysis (FPCA) and its nonlinear extension model, i.e., Kernel-based Fuzzy Principal Component Analysis (KFPCA). The experimental results indicate that the proposed algorithms have good performances.
出处 《Journal of Electronics(China)》 2007年第6期772-775,共4页 电子科学学刊(英文版)
关键词 Principal Component Analysis (PCA) Kernel methods Fuzzy PCA (FPCA) Kernel PCA (KPCA) 计算机技术 网络设计 设计方案 通信技术 信息处理
  • 相关文献

参考文献10

  • 1S.Mika,et al.Fisher discriminant analysis with kernels[].Neural Networks for Signal Processing IX.1999
  • 2F.R.Bach,and M.I.Jordan.Kernel independent component analysis[].Journal of Machine Learning Research.2002
  • 3D.R.Hardoon,S.Szedmak,and J Shawe-Taylor.Canonical correlation analysis: an overview with application to learning methods[].Neural Computation.2004
  • 4J.C.Bezdek.Pattern Recognition with Fuzzy Objective Function Algorithms[]..1981
  • 5I.T. Jolliffe.Principal Component Analysis[]..1986
  • 6Bernhard Sch?lkopf,Alexander Smola,Klaus Robert Muller.Nonlinear component analysis as a kernel eigenvalue problem[].Neural Computation.1998
  • 7Aizerman,M A,Braverman,E M,& Rozonoer,L I.Theoretical foundations of the potential function method in pattern recognition learning[].Automation and Remote Control.1964
  • 8V.N. Vapnik.Statistical Learning Theory[]..1998
  • 9Lin C F,Wang S D.Fuzzy support vector machines[].IEEE ACM Transactions on Networking.2002
  • 10C. -F. Lin,,S. -D. Wang.Training algorithms for fuzzy support vector machines with noisy data[].Pattern Recognition Letters.2004

同被引文献30

  • 1张正旺,梁伟,盛刚.斑翅山鹑巢址选择的研究[J].Zoological Research,1994,15(4):37-43. 被引量:31
  • 2林和平,杨晨.模糊主成分分析方法的研究与分析[J].航空计算技术,2006,36(6):16-20. 被引量:15
  • 3杨桄,陈克雄,周脉鱼,徐忠林,王宗明.SAR图像中目标的检测和识别研究进展[J].地球物理学进展,2007,22(2):617-621. 被引量:18
  • 4JOLLIFFE I T.Principal Component Analysis[M].Berlin:Springer,2002.
  • 5GNANADESIKAN R.Methods for Statistical Data Analysis of Multivariate Observations[M].New York:John Wiley,1977:53-62.
  • 6OJA E.A Simplified Neuron Model As a Principal Component Analysis[J].Math Biology,1982,15(3):267-273.
  • 7SCHOLKOPF B,SMOLA A,MULLER K R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,10(5):1299-1319.
  • 8YANG Tai-Ning,WANG Sheng-De.Robust Algorithm for Principal Component Analysis[J].Pattern Recognition Let-ters,1999(20):927-933.
  • 9BOLTON R J,HAND D J,WEBB A R.Projection Techniques for Nonlinear Principal Component Analysis[J].Statis-tics and Computing,2003,13(3):267-276.
  • 10YABUUCHI Y,WATADA J.Fuzzy Principal Component Analysis for Fuzzy Data[C] //Proceedings of the Sixth IEEEInternational Conference on Fuzzy Systems.New York:IEEE Press,1997:1127-1130.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部