摘要
研究下述非线性规划minx∈Xsj=1ki=1fpijij(x)这里fij:X→R+,pij≥0,ki=1pij=1,i=1,2,…,k,j=1,2,…,s.X是Rn中非空紧集.借助加权平均值不等式将问题转化为含参数函数之和的极小化问题.证明了最优参数只需取一些特定的值.特别当fij是线性齐次函数,X为凸多面体时,其最优解必定可以在X的顶点达到.同时给出了可行点为最优解的Kuhn-Tucker型最优性条件.
The non linear programming min x∈Xsj=1ki=1f p ij ij (x)is considered,where f ij :X→ R +,p ij ≥0,ki=1p ij =1,i=1,2,…,k,j=1,2,…,s.X is a nonempty compact set in R n.By means of the weighted average inequality,the problem can be converted into a minimization problem of the sum of functions containing parameters,and it is shown that the optimal parameters only take special values.Especially,when every f ij is linear and homogeneous and X is a polytope,there is the optimal solution to be the vertex of X. The Kuhn Tucker type optimal conditions are given for a feasible point to be an optimal solution.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
1997年第3期315-319,共5页
Journal of Inner Mongolia University:Natural Science Edition
基金
内蒙古自然科学基金
关键词
非线性规划
正值幂函数
乘积
极小化问题
nonlinear programming parametric linear programming weighted average inequality locally Lipschitz subdifferential