期刊文献+

大气压氦等离子体jet的模拟计算 被引量:1

Simulation of an Atmospheric Pressure Helium Plasma jet
下载PDF
导出
摘要 在大气压下利用ns级上升沿高压脉冲电源实验可产生氦等离子体jet,该jet在空气中可长达5 cm。应用高速摄影观测到该等离子体jet实际上类似于一个等离子体弹头,在低场强下其速度可达150 km/s。为了深入了解这一放电现象的物理机制,采用基于光致电离的物理模型研究了这一现象。计算结果表明,在外加电场仅为50V/m以及流注头部电荷数为7×109时,该流注可以160 km/s速度在空气中实现自持传播,这一计算结果与实验测量的值误差<10%。由此可以认为光致电离在这种等离子体jet的传播过程中起到至关重要的作用。 An atmospheric pressure helium plasma jet with a length of up to 5 cm in the surrounding air can be produced by nano-second high voltage test. High-speed photographs show that the plasma jet actually likes a plasma bullet, which propagates at a maximum velocity of 1.5 105 m/s under unusual low external electric field. In order to understand the discharge mechanism deeply, in this paper, a simple model based on photoionization is developed. And at the same time, the Computational Fluid Dynamics (CFD) method (a scientific fluid software, FLUENT) is used to simulate the distribution of fluid fields. It is found that the streamer head with a charge number of 7 ×10^9 can self-propagate at a velocity of 1.6×10^5 m/s under an external electric field of only 50 V/cm, which is less than 10% difference with the experimental results. So the conclusion can be drawn that the photoionization plays an key role in the propagation of this jet.
出处 《高电压技术》 EI CAS CSCD 北大核心 2007年第10期96-99,共4页 High Voltage Engineering
基金 国家自然科学基金(90405004)。~~
关键词 JET 光致电离 流注 大气压等离子体 计算流体动力学 氦气 jet photoionization streamer atmospheric plasma computational fluid dynamics(CFD) helium
  • 相关文献

参考文献25

  • 1Vyas V,Kushner M J.Scaling of hollow cathode magnetrons for ionized metal physical vapor deposition[J].J Vac Sci Technol A,2006,24(4):1955-1969.
  • 2Monna V,Nguyen C,Kahil M,et al.Sterilization of dental bacteria in a flowing N/sub 2/-O/sub 2/post discharge reactor[J].IEEE Trans on Plasma Sci,2002,30(4):1437-1439.
  • 3Herrmann H W,Selwyn G S,Henins I,et al.Chemical warfare agent decontamination studies in the plasma decon chamber[J].IEEE Trans on Plasma Sci,2002 30(4):1460-1470.
  • 4Ostrikov K Colloquium.Reactive plasmas as a versatile nanofabrication tool[J].Reviews of Modern Physics,2005,77 (2):489-511.
  • 5Laroussi M,Alexeff I,Richardson J P,et al.The resistive barrier discharge[J].IEEE Trans on Plasma Sci,2002,30(1):158-159.
  • 6Kogelschatz U.Their history discharge physics and industrial applications[J].Plasma Chemistry and Plasma Processing,2003,23(1):1-46.
  • 7Massines F,Gherardi N,Nande N,et al.Glow and townsend dielectric barrier discharge in various atmosphere[J].Plasma Phys Control Fusion,2005,47(12):B577-588.
  • 8Walsh J,Shi J J,Kong M G.Submicrosecond pulsed atmospheric glow discharges sustained without dielectric barriers at kilohertz frequencies[J].Appl Phys Lett,2006,89(10):161505 (1-3).
  • 9Becker K H,Schoenbach K H,Eden J G.Microplasmas and applications[J].J Phys D:Appl Phys,2006,19(3):R55-70.
  • 10Laroussi M,Lu X.Room-temperature atmospheric pressure plasma plume for biomedical applications[J].Appl Phys Lett,2005,87(11):112902(1-3).

同被引文献22

  • 1潘文霞,孟显,吴承康.直流纯氩层流等离子体射流的长度变化[J].工程热物理学报,2005,26(4):677-679. 被引量:15
  • 2杨超珍,赵伟敏,叶五梅,姚剑鹏.等离子体射流雾滴的荷电特性研究[J].高电压技术,2007,33(2):62-65. 被引量:11
  • 3赵如金,储金宇,王瑞静,吴春笃.低温等离子体催化处理汽车尾气[J].高电压技术,2007,33(2):174-177. 被引量:14
  • 4Ohyama R, Sakamoto M, Nagai A. Axial plasma density propa gation ofbarrier discharge non-thermal plasmabullets in an at mospheric pressure Argon gas stream[J]. Journal of Physics D :Applied Physics, 2009, 42(10): 105203.
  • 5Xu G M, Ma Y, Zhang G J. DBD plasma jet in atmospheric pressure Argon[J]. IEEE Transactions on Plasma Science, 2008, 36(4) : 1352-1353.
  • 6Nan Jiang, Ailing Ji, Zexian Cao. Atmospheric pressure plasma jets beyond ground electrode as charge overflow in a dielectric barrier discharge setup[J]. Journal of Applied Physics, 2010, 108(3) : 033302.
  • 7Hye Sun Park, Sun Ja Kim, Joh H M. Optical and electrical characterization of an atmospheric pressure microplasma jet witha capillary electrode[J]. Physics of Plasmas, 2010, 17 (3): 033502.
  • 8Karakas E, Koklu M, Laroussi M. Correlation between helium mole fraction and plasma bullet propagation in low temperature plasmajets[J]. Journal of Physics D: Applied Physics, 2010, 43(15) : 155202.
  • 9Walsh J L, Kong M G. Contrasting characteristics of linear- field and cross field atmospheric plasma jets[J]. Applied Phys- ics Letters, 2008, 93(11): 111501.
  • 10Qing Li, Wen Chao Zhu, Xi-Ming Zhu, et al. Effects of pen- ning ionization on the discharge patterns of atmospheric pres- sure plasma jets[J], Journal of Physics D: Applied Physics 2010, 43(38): 382001.

引证文献1

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部