期刊文献+

5V正极材料LiCr_(0.5)Mn_(1.5)O_4的电化学性能研究 被引量:1

Study on electrochemical performance of 5 V cathode material LiCr_(0.5)Mn_(1.5)O_4
下载PDF
导出
摘要 采用柠檬酸络合法,制备了尖晶石结构的LiCr0.5Mn1.5O4正极材料。通过循环伏安、电化学阻抗谱、恒流充放电等方法,测试其电化学性能。结果表明:铬离子的加入不但增加了锰离子的平均化合价,有效抑制了Jahn-Teller效应,而且达到了5V的工作电压,稳定了尖晶石结构。材料存在一个活化过程,最大放电比容量达到了145.85mAh·g–1。经过30次充放电循环之后,放电比容量仍然稳定在121.33mAh·g–1,显示了良好的循环性能,为高电位锂离子电池应用提供了良好的应用前景。 Spinel cathode material LiCr0.5Mn1.5O4 was prepared by citric acid method and characterized by cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge-discharge. The results show that the addition of Cr^3+ not only enhanced the average valence of Mn and restrained the influence of Jahn-Teller, but also stabilized the spinel structure and increased operation potential in 5 V. The materials display a process of activation and gave a peak capacity of 145.85 mAh ·g^-1. The discharge capacities remain at 121.33 mAh · g^-1 after 30 of charge-discharge cycles which indicated the better cyclieity and hopeful application in high potential lithium-ion battery.
出处 《电子元件与材料》 CAS CSCD 北大核心 2007年第11期56-58,共3页 Electronic Components And Materials
基金 哈尔滨工程大学基础研究基金资助项目(HEUF04064)
关键词 无机非金属材料 锂锰氧化物 尖晶石 铬离子 正极材料 锂离子电池 non-metallic inorganic material lithium manganese oxide spinel Cr^3+ Cathode material lithium-ion battery
  • 相关文献

参考文献8

  • 1郭炳煜,徐徽.锂离子电池[M].长沙:中南大学出版社,2002.117-122.
  • 2Arunkumar T A, Manthiram A. Influnce of chromium doping on the electrochemical performance of the 5V spinel cathode LiMn1.5Ni0.5O4 [J]. Electrochim Acta, 2005, 50(28): 5568-5572.
  • 3Thirunakaran R, Kim K T, Kang Y M. Adopic acid assisted sol-gel route for synthesis of LiCrxMn2-xO4 cathode material [J]. J Power Sources, 2004, 137(1): 100-104.
  • 4姚耀春,戴永年,杨斌,崔萌佳,李伟宏.锂离子电池正极材料LiCr_xMn_(2-x)O_4的合成及性能研究[J].无机材料学报,2005,20(5):1127-1131. 被引量:5
  • 5Lee J W. Investigation of lithium transport through LiMn2O4 film electrode in aqueous LiNO3 solution [J]. Electrochim Acta, 2004, 49(5): 753-761.
  • 6李学良,费新坤.锂离子电池正极材料LiMn_(1.95)Cr_(0.05)O_4的电化学性能[J].稀有金属快报,2005,24(4):24-26. 被引量:1
  • 7Hart D G, Choi G M. Computer simulation of the electrical conductivity of composites: the effect of geometrical arrangement [J]. Solid State Ionics, 1998, 106(1-2): 71-87.
  • 8王占良,唐致远.聚合物电解质界面性质交流阻抗研究[J].物理化学学报,2003,19(12):1097-1101. 被引量:6

二级参考文献16

  • 1[1]Wright, P. V. Electrochimica Acta, 1998, 43(10-11 ): 1137
  • 2[2]Armand, M.; Chabagno. J. M.; Ducclot, M. Fastion transport in solid. Holland: Eds Lolland Publishing Co., 1979:131-134
  • 3[3]Andreev, Y. G.; Bruce, P. G. Electrochimica Acta, 2000, 45:1417
  • 4[4]Owens, B. B. Journal of Power Sources, 2000, 90:2
  • 5[5]Song, J. Y.; Wang, Y. Y.; Wan, C.C. Journal of Power Sources,1999, 77:183
  • 6[6]Dias, F. B.; Plomp, L.; Veldhuis, J. B. J. Journal of Power Sources, 2000, 88:169
  • 7[7]Lee, K. H.; Park, J. K.; Kim, W. J. Electrochimica Acta, 2000,45:1371
  • 8[8]Kim, D. W.; Noh, K. A.; Chun, J. H.; Seong, I. M. Solid State Ionics, 1998, 106:329
  • 9[2]Yang S T, Jia J H, Ding L et al. Studies of Structure and Cycleability of LiMn2O4 and LiNd0.01Mn1.99O4 as Cathode for Li-ion Batteries [J]. Electrochemical Acta,2003, (48):569~573
  • 10[3]Hwang B J, Santhanam R, Hu S G. Synthesis and Characterization of Multidoped Lithium Manganese Oxide Spinel Li1.02Co0.1Ni0.1Mn1.8O4,for Rechargeable Lithiu Batteries [J]. Journal of Power Sources, 2002,( 108):250~255

共引文献45

同被引文献13

  • 1李琪,李飞,乔庆东.Li_(1+x)Mn_2O_4的合成及表征[J].石油化工高等学校学报,2004,17(4):22-25. 被引量:8
  • 2Fernanda F C, Bazito, Roberto M T. Cathodes for lithium ion batteries: the benefits of using nanostructured materials [J]. J Braz Chem Soc, 2006, 17(4): 627-642.
  • 3Sun Y C, Wang Z X, Huang X J, et al. Synthesis and eleclrochemical performance of spinel LiMn2-x-yNixCryO4 as 5V cathode materials for lithium ion batteries [J]. J Power Sources, 2004, 132:161 - 165.
  • 4Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5V class cathode material of Li-ion secondary battery[J]. Electrochim Acta, 2004, 49: 219-227.
  • 5Wu C,Wang Z X, Wu F, et al. Spectroscopic studies on cation-doped spinel LiMn2O4 for lithium ion batteries [J]. Solid State Ionics, 2001, 144: 277-285.
  • 6Kim J S, Vaughey J T, Johnson C S, et al. Significance of the tetrahedral a site on the electrochemical performance of substituted Li1.05M0.05Mn1.90O4 spinel electrodes (M = Li, Mg, Zn, Al) in lithium cells [J]. J Electrochem Soc, 2003, 150( 11 ): 1498 - 1502.
  • 7Ito Y, Idemoto Y, Ui K, et al. Electronic states of LiyMn2-xMxO4(M = Mn, Mg, Ni, Co) as a cathode active material for Li secondary battery by first-principles calculation using DV-X alpha method [J]. Electrochemistry, 2003, 71(12): 1145 - 1147.
  • 8Ito Y, Idemoto Y, Tsunoda Y, et al. Relation between crystal structures, electronic structures, and electrode performances of LiMn2-xMxO4(M = Ni, Zn) as a cathode active material for 4V class Li secondary battery [J]. J Power Source, 2003, 119-121: 733-737.
  • 9Fang C M, De Wijs G A, De With G, et al. Lattice and local-mode vibrations in anhydrous and protonized LiMn2O4 spinels from first-principles theory [J]. J Mater Chem, 2007, 17: 4908-4913.
  • 10Kitao H, Fujihara T, Takeda K, et al. High-temperature storage performance of Li-ion batteries using a mixture of Li-Mn spinel and Li-Ni-Co-Mn oxide as a positive electrode material [J]. Electrochem Solid State Lett, 2005, 8(2): 87-90.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部