期刊文献+

高阶P-Laplace方程边值问题的上下解方法

The method of upper and lower solutions for higher order P-Laplace equation boundary value problems
下载PDF
导出
摘要 利用上下解构造迭代序列获得边值问题(φ(x(2m-2)(t)))″=f(t,x,x″(t),x(4)(t),…x(2m-2)(t)),t∈[0,1]x(2j)(0)=0,x(2j)(1)=0,j=0,1,…m-1极值解的存在性。主要通过定义上下解构造凸闭集,通过方程定义算子,然后利用上下解构造两个迭代序列,利用算子在所构造的凸闭集中的性质,证明两个序列为单调序列,且他们是一致有界等度连续的,由Arzela定理得到算子的不动点,极值解的存在性得以证明。 The existence of extremal solutions of the boundary value problems (φ(x^(2m-2)(t)))″=f(t,x,x″(t),x^(4)(t),…x^(2m-2)(t)),t∈[0,1]x^(2j)(0)=0,x^(2j)(1)=0,j=0,1,…m-1 is obtained by constructing iterative sequence via upper and lower solutions. Mainly Convex closed set is constructed by defining upper and lower solutions. Operator is defined through the equation, then two iterative sequences is constructed via upper and lower solutions. By the property of the operator in the constructed convex closed set, the two sequences is proved that they are monotone and uniformly bounded and equicontinuous. From Arzela theorem a fixed point of the operator is obtained. Thus the existence of extremal solutions is proved.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2007年第5期689-691,共3页 Journal of Natural Science of Heilongjiang University
基金 南开大学天津大学刘徽应用数学中心资金资助项目
关键词 上下解 极值解 算子 upper and lower solutions extremal solution operator
  • 相关文献

参考文献7

  • 1Agarwal P R.On fourth-order boundary value problems arising in beam analysis[J].Differential Integral Equations,1989,(2):91-110.
  • 2Cabada A.The method of lower and upper solutions for second,third,fourth and higher order boundary value problems[J].J Math Anal Appl,1994,185:302-320.
  • 3Sadyrboev F.Two-point boundary value problem for fourth-order[J].Acta Univ,Latviensis,1990,553:84-91.
  • 4Ma R Y,Zhang J H,Fu S M.The method of lower and upper solutions for fourth-order two-point boundary value problems[J].J Math Anal Appl,1997,215:415-422.
  • 5Bai Z B,Huang B J,Ge W G.The iterative solutions for some fourth-order p-Lalace equation boundary value problems[J].Appl Math Lett,2006,19:8-14.
  • 6Eloe P W,Henderson J.Upper and lower solution methods for fully nonlinear boundary value problems[J].J Differential Equations,2002,180:51-64.
  • 7Gupta C P.Existence and uniqueness theorem for a bending of an elastic beam equation[J].Appl Anal,1988,26:289-304.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部