期刊文献+

基于Fourier-Bessel级数的Bessel型超声场二次谐波近场特性研究 被引量:5

Study on the property of the second harmonic in the nearfield of a Bessel ultrasonic field based on the Fourier-Bessel series
原文传递
导出
摘要 将Fourier-Bessel级数引入KZK方程的求解,用于计算黏滞媒质中零阶Bessel型超声场的二次谐波声场,得到其级数形式的解析解,并由此得出二次谐波声场在近场分布的一个新结论.设声源表面声压分布为J0(α0r),则二次谐波声压在近场的径向分布服从J02(α0r)函数规律.这一结论合理解释了相关的实验结果,表明二次谐波声场在近场和远场有不同的径向分布,从而解决了非线性Bessel型超声场二次谐波的近场分布问题.研究还发现二次谐波声场具有类似基波声场的有限衍射特性.给出了一个数值计算和仿真实例.  A new method based on the Fourier-Bessel series is applied in KZK equation to calculate the second harmonic component of a zero-order Bessel ultrasonic field in viscous medium.An analytical solution of a series form is obtained and a new conclusion is drawn.Assuming the source sound pressure to be J0(α0r),the second harmonic sound pressure has a radial distribution of J0^2(α0r)function profile in the near field.This conclusion explains the experimental results reported in literature appropriately and indicates that the second harmonic field has different radial distributions in the near and far field,thus solves the problem of radial distribution of the second harmonic in the nearfield of Bessel ultrasonic field.Moreover,the conclusion implies that the second harmonic field has similar limited diffraction property as the fundamental.A numerical computation and simulation example is given subsequently.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第11期6496-6502,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60471057) 中国科学技术大学青年科学基金(批准号:KA2100230001)资助的课题.~~
关键词 Fourier-Bessel级数 KZK方程 非线性超声场 Bessel波 Fourier-Bessel series,KZK equation,nonlinear ultrasonic field,Bessel beam
  • 相关文献

参考文献28

  • 1Durnin J 1987 J.Opt.Soc.Am.4 651
  • 2Durnin J,Miceli J J,Jr,Eberly J H 1987 Phys.Rev.Lett.58 1499
  • 3Hsu D K,Margetan F J,Thompson D O 1989 Appl.Phys.Lett.55 2066
  • 4Lu J Y,Greenleaf J F 1995 IEEE Trans.Ultrason.Ferroelect.Freq.Contr.42 649
  • 5Lu J Y,Zou H H,Greenleaf J F 1995 IEEE Trans.Ultrason.Ferroelect.Freq.Contr.42 850
  • 6Lu J Y 1997 IEEE Trans.Ultrason.Ferroelect.Freq.Contr.44 181
  • 7Paul D F,Cheng J Q,Lu J Y 2002 IEEE Trans.Ultrason.Ferroelect.Freq.Contr.49 1179
  • 8Burns P N,Simpson D H 2000 Ultrasound in Med.& Biol.26 19
  • 9Qian Z W 1995 Chin.Phys.4 670
  • 10陆明珠,万明习,施雨,宋延淳.多阵元高强度聚焦超声多目标控制方法研究[J].物理学报,2002,51(4):928-934. 被引量:10

二级参考文献15

  • 1薛洪惠,刘晓宙,龚秀芬,章东.聚焦超声波在层状生物媒质中的二次谐波声场的理论与实验研究[J].物理学报,2005,54(11):5233-5238. 被引量:17
  • 2Muir T G and Carstensen E L 1980 Ultrasound Med. Biol. 6 345.
  • 3Carstensen E L and Law W K and Mckay N D 1980 Ultrasound Med. Biol. 6 359.
  • 4Kuznetsov V P 1971 Soy. Phys. Acoust. 16 467.
  • 5Saito S 1993 J. Acoust. Soc. Am. 93 162.
  • 6Zhang D, Gong X F and Zhang B 2002 J. Acoust. Soc. Am. 111 45.
  • 7Landberger B J and Hamilton M F 2001 J. Acoustic. Soc. Am.109 488.
  • 8Wen J J, Breazeale M A 1988 J. Acoust. Soc. Am. 83 1752.
  • 9Ding D, Shui Y, Lin J et al 1996 J. Acoust. Soc. Am. 100 727.
  • 10Khokhlova V A, Souch0n R, Tavakkoli J, Sapozhnikov O A and Cathignol D 2001 J. Acoust. Soc. Am. 110 95.

共引文献43

同被引文献23

  • 1薛洪惠,刘晓宙,龚秀芬,章东.聚焦超声波在层状生物媒质中的二次谐波声场的理论与实验研究[J].物理学报,2005,54(11):5233-5238. 被引量:17
  • 2李俊伦,刘晓宙,章东,龚秀芬.条状障碍物对超声非线性声场的影响研究[J].物理学报,2006,55(6):2809-2814. 被引量:6
  • 3杜宏伟,彭虎,韩雪梅,于盎宁,冯焕清.Gauss型超声场谐波特性的理论研究[J].系统仿真学报,2007,19(14):3135-3138. 被引量:2
  • 4J Y Lu,J F Greenleaf. Nondiffracting X waves-exact solutions to free space scalar wave equation and their finite aperture realizations[ J ]. IEEE. Trans Ultrason, Ferroele, Contr, 1992, 39 (1):19-31.
  • 5J Y Lu, J F Greenleaf. Experimental verification of nondiffracting X waves[ J]. IEEE Trans Ultrason, Ferroelect, Contr, 1992,39(3) :441 - 446.
  • 6Jian-yu Lu. 2D and 3D high frame rate imaging with limited diffraction beams [ J ]. IEEE Trans Ultrason, Ferroelect, Freq Contr, 1997,44(4) :839 - 956,.
  • 7Jiqi Cheng, Jian-yu Lu. Extended high frame rate imaging method with limited diffraction beams[J]. IEEE Trans Ultrason, Ferroelect, Freq Contr, 2006,53 (5) : 880 - 899.
  • 8P N Bums, D H Simpson. Nonlinear imaging[J]. Ultra-sound in Med & Biol, 2000,26( 1 ) : 19 - 22.
  • 9Ya-dong Li, James A. Zagzebski. Computer model for harmonic ultrasound imaging[ J ]. IEEE Trans Ultrason, Ferroelect, Freq Contr,2000,47 (4) : 1000 - 1013.
  • 10Y S Lee, M F Hamilton. Time-domain modeling of pulsed finite- amplitude sound beams[J] .J Acoust Soc Amer, 1995,97 (2):906-917.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部