期刊文献+

带栅极纳米线冷阴极的场增强因子研究 被引量:7

Study on field enhancement of a normal-gated field emission nanowire cold cathode
原文传递
导出
摘要 场增强因子是体现场发射冷阴极器件性能优劣的重要参数.利用静电场理论给出了一种带栅极(normal-gated)纳米线冷阴极的场增强因子表示式β=k11/2(N^2.(L-d_1)~2+[1/k_1+(L-d_1)]~2),且进一步分析了几何参数对场增强因子的影响.结果表明,纳米线突出栅孔的部分(L-d1)与栅孔半径越大,则场增强因子越大;而纳米线半径越小,则场增强因子越大;当L远大于d1时满足β∝L/r0.其中N=N1(k1r0)/N0(k1r0),N0(k1r0)和N1(k1r0)分别代表零阶和一阶Neumann函数,k1=0.8936/R,R为栅孔半径,L为纳米线长度,r0为纳米线半径,d1表示阴极与栅极间距.  The field enhancement is one of the important factors that indicate the performance of field emission cold cathode devices.It is intimately related to the field emission current density and the threshold voltage of the device.In our paper,the field enhancement factor of a normal-gated field emission nanowire cold cathode model was analytically deduced on the basis of classical electrostatic theory,and it is given by the equation.β=k1√N^2·(L-d1)^2+[1/k1+(L-d1)]^2. The effect of geometrical parameters of the device on the field enhancement factor was explored.The theoretical analysis showed that the larger the length(L-d1)of nanowire above the gate and the gate hole radius,the larger the enhancement factor is;but the larger the nanowire radius,the smaller the enhancement factor is.When the L is much larger than d1,the enhancement factor satisfies the relation.β∝L/r0,for which N=N1(k1r0)/N0(k1r0),N0(k1r0)and N1(k1r0)are both Neumann functions and k1=0.8936/R.R,L,r0 and d1 are the gate hole radius,the nanowire length,the nanowire radius and the gate-cathode distance,respectively.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第11期6616-6622,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50072029 50572101)资助的课题.~~
关键词 纳米线 冷阴极 场增强因子 场发射 nanowire,cold cathode,enhancement factor,field emission
  • 相关文献

参考文献29

  • 1Song L,Liu S,Zhang G M,Liu L F,Ma W J,Liu D F,Zhao X W,Luo S D,Zhang Z X,Xiang Y J,Shen J,Zhou J J,Wang G,Zhou W Y 2006 Chin.Phys.15 422
  • 2Zhou G,Duan W H 2005 J.Nanosci.Nanotechno.5 1421
  • 3Chen C L,Chen Y F,Chen R S,Huang Y S 2005 Appl.Phys.Lett.86 103104
  • 4Jo S H,Banerjee D,Ren Z F 2004 Appl.Phys.Lett.85 1407
  • 5She J C,Deng S Z,Xu N S,Yao H R,Chen J 2006 Appl.Phys.Lett.88 013112-1
  • 6Chen R S,Huang Y S,Liang Y M,Hsieh C S,Tsai D S,Tiong K K 2004 Appl.Phys.Lett.84 1552
  • 7Li S Y,Lin P,Lee C Y,Tseng T Y 2004 J.Appl.Phys.95 3711
  • 8Minh P N,Tuyen L T T,Ono T,Miyashita H,Suziki Y,Mimura H,Esashi M 2003 J.Vac.Sci.Technol.B 21 1705
  • 9刘筠乔,詹杰民.Spindt型与薄膜场致发射的数值模拟与特性比较[J].物理学报,2005,54(7):3439-3443. 被引量:4
  • 10秦少玲,屠彦,尹涵春.场致发射尖端电场分布及其模拟误差研究[J].电子器件,2004,27(4):564-567. 被引量:3

二级参考文献73

  • 1王新庆,王淼,李振华,杨兵,王凤飞,何丕模,徐亚伯.单根纳米导线场发射增强因子的计算[J].物理学报,2005,54(3):1347-1351. 被引量:14
  • 2王淼,尚学府,李振华,王新庆,徐亚伯.纳米碳管阵列场增强因子的计算[J].物理学报,2006,55(2):797-802. 被引量:9
  • 3-.ANSYS入门手册[M].ANSYS公司出版,2001..
  • 4Lippmann B Schwinger J.Phys Rev,1950,79:469-469.
  • 5[2]Benerd J M,Stockli T,Maier F et al 1998 Phys.Rev.Lett. 81(7) 1441
  • 6[3]Wang Z X et al 1999 Acta Phys.Sin. 48 2092(in Chinese)[王震遐等 1999 物理学报 48 2092]
  • 7[4]Bonard J M,Salvetat J P,Stockli T et al 1999 Appl.Phys. A 69 245
  • 8[5]Saito Y,Hamaguchi K,Uemura S et al 1998 Appl.Phys. A 67 95
  • 9[6]Davydov D N,Sattari P A,Aimawlawi D A et al 1999 J.Appl.Phys. 86(7) 3983
  • 10[8]Fan S,Chapline M G,Franklin N R et al 1999 Science 283 512

共引文献43

同被引文献89

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部