期刊文献+

矩阵方程X—A*X^qA=I(0<q<1)Hermite正定解的扰动分析 被引量:3

PERTURBATION ANALYSIS OF THE HERMITIAN POSITIVE DEFINITE SOLUTIONS OF THE MATRIX EQUATION X-A*X^qA=I(0<q<1)
原文传递
导出
摘要 首先证明了非线性矩阵方程X-A~*X^qA=I(0<q<1)有唯一的正定解.讨论了方程唯一解的扰动界,并且说明了方程是适定的.给出了解的条件数的显式表达式.并且估计出矩阵方程近似解的向后误差.利用数值例子验证了以上结果. Consider the nonlinear matrix equation X-A^*X^qA=I(0〈q〈1) with 0 〈 q 〈 1. it shows that there exists a uique positive definite solution to the equation. A perturbation bound for the unique solution to the equation is derived, and shows that the equation is well-posed. Explicit expressions of the condition number for the unique positive definite solution are obtained, and the backward error of an approximate solution to the unique positive definite solution is evaluated.The results are illustratd by numerical examples.
出处 《计算数学》 CSCD 北大核心 2007年第4期403-412,共10页 Mathematica Numerica Sinica
基金 数学天元基金资助项目(A0324654).
关键词 非线性矩阵方程 正定解 扰动界 条件数 误差估计 Nonlinear matrix equation, Positive definite solution, Perturbation bound,Condition number, Error estimate
  • 相关文献

参考文献6

  • 1Reurings M C B. Symmetric matrix equations[M]. The Netherlands: Universal Press, 2003.
  • 2Gao D J, Zhang Y H. On Hermitian positive definite solutions of matrix equation X - A^*X^qA I(q > 0)[J].Journal of Shandong University, 2006, 41(1): 97-105.
  • 3Rice J R. A theory of condition[J]. J. SIAM Numer. Anal., 1966, 3(2): 287-310.
  • 4Sun J G. Condition number of algebraic Riccati equations in the Frobenius norm[J], Linear Algebra Appl., 2002, 350: 237-261.
  • 5Sun J G, Xu S F. Perbation analysis of the maximal solution of matrix equation X+i- A^*X^-1A = Р.П[J]. Linear Algebra Appl., 2003, 362: 211-228.
  • 6Guo Dajun, Lakshmikantham V. Nonlinear problems in abstract cones[M]. Academic Press, INC, 1988: 30-50.

同被引文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部