期刊文献+

一类非标准随机游动及其在风险理论中的应用 被引量:5

A Class of Non-Standard Random Walks with Applications to Risk Theory
原文传递
导出
摘要 考虑一类非标准的随机游动Sn=X1+…+Xn,其中Xi(i≥1)为一列独立的随机变量序列,X1的分布函数为G,Xi(i≥2)具有共同的分布函数F.本文主要研究了F与G属于S(γ)族时,非标准随机游动的尾等价式和局部等价式,并给出在风险理论中的一些应用.  This paper studies a class of non-standard random walk, Sn = X1 + ... + Xn, where Xi (i≥1) is a sequence of independent random variables, and X1 has a distributin G, Xi (i≥2) have the common distribution F. Under the assumption that the distributions of the summands belong to S(γ), we obtain a local asymptotic estimate and a tail asymptotic estimate for the distribution of maximum of Sn. Applications in risk theory are investigated.
出处 《应用数学学报》 CSCD 北大核心 2007年第5期769-780,共12页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10471076 10771119) 教育部科技重点项目(206091) 山东省自然科学基金(2004A06)资助项目.
关键词 非标准随机游动 S(γ)族 阶梯高度 尾概率 破产概率 Non-standard random walk the class S(γ) ladder height tail probability ruin probability
  • 相关文献

参考文献1

二级参考文献7

  • 1Qihe Tang,Jia’an Yan.A sharp inequality for the tail probabilities of sums of i.i.d. r.v.’s with dominatedly varying tails[J].Science in China Series A: Mathematics.2002(8)
  • 2Qihe Tang.An asymptotic relationship for ruin probabilities under heavy-tailed claims[J].Science in China Series A: Mathematics.2002(5)
  • 3Chun Su,Qihe Tang,Tao Jiang.A contribution to large deviations for heavy-tailed random sums[J].Science in China Series A: Mathematics.2001(4)
  • 4Claudia Klüppelberg.Subexponential distributions and characterizations of related classes[J].Probability Theory and Related Fields.1989(2)
  • 5Kluppelberg,C.Subexponential distributions and characterizations of related classes, Probab.Th. Rel[].Fields.1989
  • 6Dickson,D. C. M.On a class of renewal risk processes[].North American Archaeologist.1998
  • 7ChunSu,Qi-heTang.Characterizations on Heavy-tailed Distributions by Means of Hazard Rate[J].Acta Mathematicae Applicatae Sinica,2003,19(1):135-142. 被引量:18

共引文献4

同被引文献38

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部