摘要
考虑一类非标准的随机游动Sn=X1+…+Xn,其中Xi(i≥1)为一列独立的随机变量序列,X1的分布函数为G,Xi(i≥2)具有共同的分布函数F.本文主要研究了F与G属于S(γ)族时,非标准随机游动的尾等价式和局部等价式,并给出在风险理论中的一些应用.
This paper studies a class of non-standard random walk, Sn = X1 + ... + Xn, where Xi (i≥1) is a sequence of independent random variables, and X1 has a distributin G, Xi (i≥2) have the common distribution F. Under the assumption that the distributions of the summands belong to S(γ), we obtain a local asymptotic estimate and a tail asymptotic estimate for the distribution of maximum of Sn. Applications in risk theory are investigated.
出处
《应用数学学报》
CSCD
北大核心
2007年第5期769-780,共12页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10471076
10771119)
教育部科技重点项目(206091)
山东省自然科学基金(2004A06)资助项目.
关键词
非标准随机游动
S(γ)族
阶梯高度
尾概率
破产概率
Non-standard random walk
the class S(γ)
ladder height
tail probability
ruin probability