期刊文献+

发展型p-Laplace方程(组)解的整体有限性

Global Finiteness of Solutions for Evolution p-Laplace Equations and Systems
原文传递
导出
摘要 本文主要在多维空间中讨论一类发展型p-Laplace方程及方程组的初边值问题.这类问题在非牛顿渗流方程的理论研究中有着重要的意义.作者通过上、下解的方法证明了发展型p-Laplace方程解的整体有限性;同时利用两个关于常微分方程的比较原理,给出了相应的方程组解的整体有限性结果. In this paper, the authors study evolution p-Laplace equations and systems in multidimensional space. The problems studied are important in studying the non-Newton fluidics.The authors prove the global finiteness of solutions for evolution p-Laplace equations with the use of the supsolution and subsolution method; and prove the global finiteness of solutions for evolution p-Laplace systems by using comparison principles of two ordinary differential equations.
作者 孙鹏 高文杰
机构地区 吉林大学
出处 《应用数学学报》 CSCD 北大核心 2007年第5期903-909,共7页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10371050号)资助项目.
关键词 发展型p-Laplace方程 整体有限性 比较原理 evolution p-Laplace equations global finiteness comparison principle.
  • 相关文献

参考文献10

  • 1Constantin A,Escher J.Global Solutions for Quasilinear Parabolic Problems.J.Evol.Equations,2002,2:97-111
  • 2Constantin A,Escher J,Yin Zhaoyang.Global Solutions for Quasilinear Parabolic Systems.J.Differential Equations,2004,197:73-84
  • 3Adams R A.Sobolev Spaces.New York,San Francisco,London:Academic Press,1975
  • 4Komura Y.Nonlinear Semigroups in Hilbert Spaces.J.Math.Soc.Japan,1967,19:493-507
  • 5Yoshida K.Functional Analysis.Berlin,Heidelberg,New York:Springer-Verlag,1980
  • 6Gilbarg D,Trudinger N S.Elliptic Partial Differential Equations of Second Order.Berlin,Heidelberg,New York:Springer-Verlag,1977
  • 7Rudin W.Real and Complex Analysis.New Delhi:Tats McGraw-Hill,1983
  • 8Pachpatte B G.Inequalities for Differential and Integral Equations.New York:Academic Press,1998
  • 9Zhang J.Houndedness and Blow-up Behavior for Reaction-diffusion Systems in Bounded Domain.Nonlinear Anal.TMA,1999,35:833-844
  • 10Zhao Junning.Existence and Nonexistence of Solutions for ut = div (|▽u|p-2▽u)+f(▽u,u,x,t).J.Math.Anal.Appl.,1993,172:130-146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部