期刊文献+

Boussinesq方程解的部分正则性 被引量:2

Partial Regularity Problem of the Boussinesq Equations
原文传递
导出
摘要 本文考虑Boussinesq方程一类合适弱解的部分正则性.我们先运用广义能量不等式和奇异积分理论得到一些无维量的估计;再通过合适弱解满足的等式,运用迭代技巧,推导出温度场的小性估计;最后由尺度分析(scaling arguments)得到了一类合适弱解的部分正则性. In this paper, we are concerned with the partial regularity of the suitable weak solutions to the three-dimensional incompressible Boussinesq equations. Firstly, based on the generalized energy inequality, we get estimates of some scaled nondimensional quantities. Secondly, we employ the iterative technique to obtain the smallness of some scaled quantities of temperature field. Finally, by scaling arguments we get the partial regularity for the suitable weak solutions.
出处 《应用数学学报》 CSCD 北大核心 2007年第5期936-954,共19页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10431060)资助项目
关键词 BOUSSINESQ方程 弱解 部分正则性 Boussinesq equations weak solutions partial regularity
  • 相关文献

参考文献10

  • 1Caffarelli L,Kohn R,Nirenberg L.Partial Regularity of Suitable Weak Solution of the Navier-Stokes Equations.Comm.Pure Appl.Math.,1982,35:771-837
  • 2Lin F.A New Proof of the Caffarelli-Kohn-Nirenberg Theorem,Comm.Pure Appl.Math.,1998,L1:241-257
  • 3Tian G,Xin Z.Gradient Estimation on Navier-Stokes Equations.Comm.Anal Geom.,1999,7(2):221-257
  • 4He C,Xin Z.Partial Regularity of Suitable Weak Solutions to the Incompressible Magnetohydrodynamic Equations,J.Funct.Anal.,2005,227:113-152
  • 5Adams R A.Sobolev Spaces.New York:Academic Press,1978
  • 6Ladyzhenskaya O A.The Mathematical Theory of Viscous Incompressible Flow.New-York Gordon & Breach,1969
  • 7Serrin J.The Initial Value Problem for the Navier-Stokes Equations.In "Nonlinear Problem",R.F.Langer,ed.,University of Wisconsin Press,1963,69-98
  • 8Sohr H.The Navier-Stokes Equations:an Elementary Funcational Analytic Approach.Bosron,Basel,Berlin,Birkh(a)user,2001
  • 9Struwe M.On Partial Regularity Results for the Navier-Stokes Equations.Comm.Pure Appl.Math.,1988,41:437-458
  • 10Temam R.Navier-Stokes Equations Theory and Numerical Analysis.North-Holland-Amsterdam New York Oxford,1984

同被引文献29

  • 1H. BEIRaO DA VEIGA (Department of Mathematics, Pisa University, Pisa, Italy).A NEW REGULARITY CLASS FOR THE NAVIER-STOKES EQUATIONS IN IR^n[J].Chinese Annals of Mathematics,Series B,1995,16(4):407-412. 被引量:39
  • 2刘诗焕,钟越,黄文毅,赖绍永.一类阻尼Boussinesq方程初边值问题的整体解[J].四川师范大学学报(自然科学版),2007,30(3):275-279. 被引量:7
  • 3苗长兴,原保全.弱Morrey空间与Navier-Stokes方程的强解[J].中国科学(A辑),2007,37(8):993-1008. 被引量:2
  • 4Boussinesq J.Theorie des ondes et de remous qui se propagent le long d' un canal rectangularly horizontal,et communiquant au liquide contene dans ce canal des vitesses sensiblement pareilles de la surface au fond[J].J Math Pures Appl,1872,17 (2):55-108.
  • 5Bona J,Sachs R.Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[J].Commun Math Phys,1988,118 (1):15-29.
  • 6Liu Y.Strong instability of solitary-wave solutions of a generalized Boussinesq equation[J].J Diff Eqns,2000,164(2):223-239.
  • 7Varlamov V V.On the Cauchy problem for the damped Boussinesq equation[J].Diff Int Eqns,1996,9(3):619-634.
  • 8Lai S Y,Wu Y H.The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation[J].Discrete and Continuous Dynamical System,2003,3 (3):401-408.
  • 9Wang S B,Xue H X.Global solution for a generalized Boussinesq uequation[J].Appl Math Comput,2008,204 (1):130-136.
  • 10Song C,Yang Z.Globalsolution to the Cauchy problem of the nonlinear double dispersive wave equation with strong damping[J].Dynamics PDE,2009,6 (4):367-383.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部