期刊文献+

基于独立分量分析的遥感影像分类方法 被引量:5

Remote Image Classification Based on Independent Component Analysis
下载PDF
导出
摘要 多光谱遥感影像反映了不同地物的光谱特征,其分类是遥感应用的基础。独立分量分析对未知的源信号的混合信号进行估计,可以获得相互独立的源信号的近似。独立分量分析利用了信号的高阶统计信息,对于多光谱遥感影像而言,其去除了波段影像之间的相关性,获得的波段影像是相互独立的。最后通过TM遥感影像数据的分类试验,验证了基于独立分量分析的线性光谱混合分析模型应用于多光谱遥感影像非监督分类的有效性。 The multi-spectral remote sensing images reflect the spectral features of diverse surface features, and their classification is the base of remote sensing applications. Independent Component Analysis (ICA) algorithm can estimate the independent source signals that are mixed by unknown mode, and the source signals are unknown, too. The ICA al- gorithm uses the high-order information of signals; to multi-spectral remote sensing images, ICA algorithm not only re- moves the correlation of images, but also obtains the new band images that are mutual independent. Experimental results with TM remote sensing images show that a linear spectral random mixture analysis model based on ICA is effective in multi-spectral remote sensing image classification.
出处 《科学技术与工程》 2007年第23期6244-6247,共4页 Science Technology and Engineering
基金 国家自然科学基金重点项目(40335050)资助
关键词 多光谱遥感影像分类 独立分量分析 主成分分析 线形光谱混合模型 multi-spectral remote sensing imagery classification independent component analysis principal component analysis linear spectral mixture model
  • 相关文献

参考文献2

二级参考文献24

  • 1Chen C H, Zhang X. Independent component analysis for remote sensing study[C]. SPIE vol 3871, 1999: 150-155.
  • 2Jutten C, Herault J. Independent Component analysis verus principal component analysis [ C ]. in Proe. Europ. Signal Processing Conf EUSIPC088, 1988: 643-646.
  • 3Comon P. Independent Component Analysis, A new concept [ J].Signal Processing, 1994, 36(3) : 287-314.
  • 4Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution [ J ]. Neural Computation,1995, 7(6): 1129-1159.
  • 5Lee T W et al. Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources[J]. Neural Computation, 1997, 11(2) :409-433.
  • 6Hyvarinen A. Fast and robust fLxed-point algorithms for independent component analysis [J]. IEEE Trans Neural Networks, 1999,8(3) : 622-634.
  • 7孙顺才,太湖,1993年
  • 8团体著者,中国地球资源光谱信息资料汇编,1987年
  • 9肯德尔 M,多元分析,1983年
  • 10阎守邕,地球资源技术卫星,1980年

共引文献52

同被引文献51

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部