期刊文献+

基于遗传算法的自适应聚类与MQAM星座识别 被引量:3

Adaptive Clustering and MQAM Constellation Recognition Based on Genetic Algorithms
下载PDF
导出
摘要 提出了一种基于星座聚类的MQAM调制识别新方法,运用一种改进的基于遗传算法的自适应聚类算法对MQAM星座进行重构和识别。该自适应聚类算法利用遗传算法的高效全局搜索特性,克服了模糊C-均值算法对初始聚类中心和样本输入次序敏感等不足,结合聚类有效性分析实现了聚类中心数目的自适应调整。仿真结果表明,基于该聚类算法的MQAM信号调制阶数识别方法是有效的。 A novel modulation recognition method for MQAM signals is proposed. It employs a modified genetic algorithms (GA) based clustering method to rebuild and recognize constellations. The presented clustering algorithm not only overcomes the sensitivity to initial centers as fuzzy C-means with the effective global searching ability of GA, but also determines the number of clusters adaptively via validity analysis. Experiments show that this MQAM recognition method is effective.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第22期39-41,47,共4页 Computer Engineering
关键词 遗传算法 聚类 星座 调制识别 genetic algorithms clustering constellation modulation recognition
  • 相关文献

参考文献5

  • 1Mobasseri B G.Digital Modulation Classification Using Constellation Shape[J].Signal Processing,2000,80(2):251-277.
  • 2DudaRO HartPE DavidG. Stork著 李宏东 姚天翔等译.模式分类[M].北京:机械工业出版社,2003..
  • 3徐勇 荆涛.神经网络模式识别及其实现[M].北京:电子工业出版社,1999..
  • 4Wu Y X,Ge L D,Liu F F.Comprehensive Features Based Digital Modulation Identification Using a Neural Tree Network[C] //Proceeding of 2005 International Conference on Communications,Circuits and Systems.2005,2:748-752,.
  • 5喻寿益,郭观七.一种改善遗传算法全局搜索性能的小生境技术[J].信息与控制,2001,30(6):526-530. 被引量:34

二级参考文献1

  • 1Yang I R,J Optimization Theory Application,1998年,98卷,2期,449页

共引文献87

同被引文献24

  • 1王建新,宋辉.基于星座图的数字调制方式识别[J].通信学报,2004,25(6):166-173. 被引量:56
  • 2叶健,吴月娴,葛临东.基于高效自适应聚类算法的调制识别研究[J].计算机工程与设计,2007,28(3):506-508. 被引量:6
  • 3Sato-Ilic M.Fuzzy regression analysis using fuzzy clustering[C]. New Orleans, USA:Proceedings of the North American Fuzzy Information Processing Society,2002:57-62.
  • 4宋娇.基带调制识别算法研究与设计实现[D].郑州:信息工程大学,2007.
  • 5Taira S,Murakami E.Automatic classification of analogue modulation signals by statistical parameters[J].IEEE Signal Processing Magazine, 1999(1 ):202-207.
  • 6包锡锐.短波通信信号调制分类算法研究及DSP实现[D].郑州:信息工程大学,2007.
  • 7Nandi A K, Azzouz E E. Automatic Analogue Modulation Recognition [J]. Signal Processing, 1995, 1 (46) : 211-222.
  • 8Wen Jin, Zhao Jiali, Luo Siwei, et al. The Improvements of BP Neural Network Learning Algorithm [C]//2000 5th International Conference on Signal Processing Proceedings. New York: IEEE Press, 2000:1647-1650.
  • 9Campos P G, Oliveira E M J, Ludermir T B,et al. MLP Networks for Classification and Prediction with Rule Extraction Mechanism[C]//2004 IEEE International Joint Conference on Neural Networks proceedings. Budapest, Hungary: IEEE Press, 2004: 1387- 1392.
  • 10Chaiyaratana N, Zalzala A M S. Recent Developments in Evolutionary and Genetic Algorithms: Theory and Application [ C ] // Second International Conference on Genetic Algorithms in Engineering Systems, Innovations and Applications. London: Institution of Electrical Engineers, 1997: 270-277.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部