期刊文献+

一种挖掘最大频繁集的算法

An Algorithm for Mining Maximum Frequent Itemsets
原文传递
导出
摘要 挖掘频繁项目集是关联规则应用中的关键问题.目前挖掘频繁集主要有 Apriori 算法和频繁树法两大类.本文提出与上述两类算法完全不同的高效挖掘最大频繁集的算法:最小支持数最小组合算法(MSMCA).该算法不产生候选频繁集,能较大减少计算量的开销.此外,在此算法的研究中,本文提出另一个子课题:重复数列中最小支持数最小组合算法研究. Mining complete set of frequent patterns remains a key problem to the application of association rules. Up to date, the most commonly used methods are Apriori algorithm and FP-TREE algorithm. In this paper, a high efficient algorithm, minimal support minimal combination algorithm (MSMCA), is proposed. It is completely different from the two existing methods. The candidate set of frequent itemsets are not produced by using MSMCA, thus the cost of computer reduces largely. In addition, a sub-project, minimal support minimal combination in repeat array, is proposed in the course of studying MSMCA.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第5期661-666,共6页 Pattern Recognition and Artificial Intelligence
基金 湖南省自然科学基金(No.04JJ40048) 湖南省教育厅科研课题基金(No.05C545)
关键词 关联规则 最大频繁集 最小支持数最小组合算法(MSMCA) 重复数列中最小支持数最小组合(MSMCRA) Association Rules, Maximum Frequent Itemsets, Minimal Support Minimal Combination Algorithm (MSMCA), Minimal Support Minimal Combination in Repeat Array (MSMCRA)
  • 相关文献

参考文献12

二级参考文献44

  • 1RAgrawa1 TImie1inSki Aswami.Mining association ru1es between sets of items in 1arge database[J].The ACM SIGMOD Intemationa1 Conf on Management of Data, Washington, DC,1993,.
  • 2Jhan M Kamber著 范明 孟小峰等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3[1]Agrawal R., Imielinski T., Swami A.. Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D. C. , USA, 1993, 207~216
  • 4[2]Lin D-I. , Kedem Z. M.. Pincer-search: A new algorithm for discovering the maximum frequent set. In: Proceedings of the 6th International Conference on Extending Database Technology, Valencia, Spain, 1998, 105~119
  • 5[3]Bayardo R. J.. Efficiently mining long patterns from databases.In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA,1998, 85~93
  • 6[4]Aggarwal C. , Agarwal R. , Prasad V. V. V.. Depth first generation of long patterns. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Boston, MA, USA, 2000, 108~118
  • 7[5]Burdick D. , Calimlim M. , Gehrke J.. MAFIA: A maximal frequent itemset algorithm for transactional databases. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2001, 443~452
  • 8[6]Agrawal R. , Srikant R.. Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, 1994, 487~499
  • 9[7]Liu Jun-Qiang, Pan Yun-He, Wang Ke, Han Jia-Wei. Mining frequent item sets by opportunistic projection. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Alberta, Canada, 2002, 229~238
  • 10[8]Wang Ke, Liu Tang, Han Jia-Wei, Liu Jun-Qiang. Top down FP-growth for association rule mining. In: Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Taipei, Taiwan, China, 2002, 334~340

共引文献339

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部