摘要
挖掘频繁项目集是关联规则应用中的关键问题.目前挖掘频繁集主要有 Apriori 算法和频繁树法两大类.本文提出与上述两类算法完全不同的高效挖掘最大频繁集的算法:最小支持数最小组合算法(MSMCA).该算法不产生候选频繁集,能较大减少计算量的开销.此外,在此算法的研究中,本文提出另一个子课题:重复数列中最小支持数最小组合算法研究.
Mining complete set of frequent patterns remains a key problem to the application of association rules. Up to date, the most commonly used methods are Apriori algorithm and FP-TREE algorithm. In this paper, a high efficient algorithm, minimal support minimal combination algorithm (MSMCA), is proposed. It is completely different from the two existing methods. The candidate set of frequent itemsets are not produced by using MSMCA, thus the cost of computer reduces largely. In addition, a sub-project, minimal support minimal combination in repeat array, is proposed in the course of studying MSMCA.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2007年第5期661-666,共6页
Pattern Recognition and Artificial Intelligence
基金
湖南省自然科学基金(No.04JJ40048)
湖南省教育厅科研课题基金(No.05C545)