期刊文献+

超声乳腺肿瘤图像的边缘提取 被引量:3

Boundary extraction of ultrasonic breast tumor image
下载PDF
导出
摘要 目的探求乳腺肿瘤超声图像的边缘提取。方法广义梯度矢量流Snake模型已经成功地用于噪声相对比较小的CT、MRI等医学图像,然而乳腺肿瘤超声图像对比度低,斑点噪声大,很难将该模型直接应用于乳腺肿瘤超声图像。本文针对乳腺肿瘤超声图像的特点如图像对比度低,斑点噪声大,部分边缘缺失,肿瘤内部微细结构分布复杂(如血管,钙化灶等),特别恶性肿瘤还具有复杂形状等,采用相应的图像处理技术如非线性各向异性扩散滤除斑点噪声,形态学滤波器平滑图像,直方图均衡化提高图像的对比度,最后将该模型引入到乳腺肿瘤超声图像边缘提取。结果实验对158例乳腺肿瘤超声图像进行边缘提取,定量和定性分析均获得满意的结果。结论本文方法可以有效地用于超声乳腺肿瘤图像的边缘提取。  Objective To extract boundary of ultrasonic breast tumor image. Methods Generalized gradient vector flow snake has been successfully applied to CT and MRI. However, due to poor image contrast and high-level speckle noise it is unsuitable to directly apply GGVF Snake to segment ultrasonic breast tumor image. To deal with the characteristics of the images: poor image contrast, high-level speckle noise, boundary gaps and irregular shape, ultrasonic breast tumor image is firstly preprocessed such as nonlinear anisotropic diffusion, morphological filter and histogram equalization, then GGVF Snake is applied to extract the boundary of breast tumor. Results Experiments on 158 ultrasonic breast tumor images showed that both quality and quantity results are promising. Conclusion Proposed method could extract the boundary of breast tumor effectively.
出处 《中国医学影像技术》 CSCD 北大核心 2007年第10期1572-1574,共3页 Chinese Journal of Medical Imaging Technology
基金 上海市科委基金项目资助(054119612)。
关键词 超声图像 边缘提取 各向异性扩散 GGVF SNAKE Ultrasonic image Boundary extraction Anisotropic diffusion GGVF Snake
  • 相关文献

参考文献13

  • 1Stavros AT,Thickman D,Rapp CL,et al.Solid breast nodules:use of sonography to distinguish between benign and malignant lesions[J].Radiology,1995,196(1):123-134.
  • 2林其忠,余建国,赵暖,王威琪,王怡,陈亚青.乳腺肿瘤超声图像的特征分析[J].仪器仪表学报,2006,27(z1):744-746. 被引量:5
  • 3Madabhushi A,Metaxas DN.Combining low,high-level and empirical domain knowledge for automated segmentation of ultrasound breast images[J].IEEE Trans Med Image,2003,22(2):155-169.
  • 4Huang YL,Chen DR.Automatic contouring for breast tumors in 2D sonography[C].Shanghai:IEEE EMBS 27th Ann Confer,2005:3225-3228.
  • 5Chang RF,Wu WJ.Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors[J].Breast Cancer Res Treatm,2005,89(2):179-185.
  • 6Yu Y,Acton ST.Speckle reducing anisotropic diffusion[J].IEEE Trans Image Processing,2002,11(11):1260-1270.
  • 7Xu CY,Prince JL.Generalized gradient vector flow external forces for active contours[J].Signal Processing,1998,71(2):131-139.
  • 8Rafel CG,Richard EW,Steven LE.Digital Image Processing Using MATLAB[M].Beijing:Publishing House of Electron Industry,2005:279-280.
  • 9Kass M,Witkin A,Terzopoulos.Snake:Active contour models[J].J Computer Vison,1998,1(4):321-331.
  • 10Xu CY,Prince JL.Snakes,shapes,and gradient vector flow[J].IEEE Trans Image Proc,1998,7(3):359-369.

二级参考文献5

  • 1赵暖,陈亚青,余建国,王威琪.Snake模型在乳腺肿瘤超声图像处理中的运用[J].上海医学影像,2005,14(1):10-12. 被引量:2
  • 2[1]ZHENGY,GREENLEAF J F,GISVOLD JJ.Reduction of breast biopsies with a modified selforganizing map.IEEE Trans Neural Networks,1997,8:1386-1396.
  • 3[2]CHENC M,CHOU Y H,HUNG G S,TIU C M,CHIOU H J,CHIOU S Y.Breast lesions on sonograms:computer-aided diagnosis with nearly setting-independent features and artificial neural networks.Radiology,2003,226(2):504-514.
  • 4[3]Segyeong Joo,Yoon Seok Yang,Woo Kyung Moon,Hee Chan Kim.Computer-aided diagnosis of solid breast nodules:use of an artificial neural network based on multiple sonographic features.IEEE Transactions on Medical Imaging,2004,23 (10).
  • 5[6]DONOHO D.Nonlinear wavelet methods for recovery of signals,densities and spectra from indirect noisy data.In I Daubechies,editor,Proceedings of Symposia in Applied Mathematics,1993,173-205.

共引文献4

同被引文献37

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部