期刊文献+

一种基于噪声快速跟踪的语音增强算法 被引量:1

A Speech Enhancement Method Based on Noise Estimation with Rapid Adaptation
下载PDF
导出
摘要 对解决传统减谱算法残留音乐噪声的问题,现有许多方法都无法达到理想效果。提出一种能在非平稳噪声环境下快速追踪噪声的语音增强方法,采用端点检测优化信噪比,达到较好的语音增强效果。实验表明,相比其他类似方法,在提高实时性、增加信噪比和抑制背景噪声和音乐噪声方面都有更好效果。 Traditional spectral subtraction algorithms bring in musical noise, which is hard to overcome. A speech enhancement method based on noise estimation with rapid adaptation in non-stationary noisy environments is proposed, and an endpoint detection is employed to optimize SNR(Signal-to-noise Ratio). The results show significant improvements in efficiency, SNR, and the reduction of background noise and residual noise.
出处 《电声技术》 2007年第11期55-60,共6页 Audio Engineering
基金 国家自然科学基金(60572011) 甘肃省自然科学基金(YS021-A22-00910) 兰州大学"985工程"一期第二批特色研究方向学科建设资助项目(LZ985-231-582627) 兰州大学2006年君政基金
关键词 语音增强 噪声估计 匹配滤波 端点检测 peech enhancement noise estimation matching filtering endpoint detection
  • 相关文献

参考文献9

  • 1RAINER M. Noise power spectral density estimation based on optimal smoothing and minimum statistics[J]. IEEE Transactions on Speech and Audio Processing,2001,9(5) :504-512.
  • 2RAINER M. Spectral subtraction based on minimum statistics[C]// Proceedings of the 7th European Signal Processing Conference. Edinburgh : EURASIP, 1994 : 1 182- 1 185.
  • 3GERHARD D. Computationally efficient speech enhancement by spectral minma tracking in subbands[C]// Proceedings of the 4th European Conference on Speech Technology and Communication. Madrid :ISCA, 1995 : 1 513- 1 516.
  • 4COHEN I, BERGDUGO B. Noise estimation by minima controlled reeursive averaging for robust speech enhancement[J]. IEEE Signal Processing Letters,2002,9(1 ) : 12-15.
  • 5COHEN I. Noise spectral estimation in adverse environments:improved minima controlled recursive averaging[J]. IEEE Transactions on Speech and Audio Processing, 2003,11 (5) :466-475.
  • 6刘海滨,吴镇扬,赵力,曾毓敏.非平稳环境下基于人耳听觉掩蔽特性的语音增强[J].信号处理,2003,19(4):303-307. 被引量:16
  • 7RANGACHAR S, LOIZOU P C, HU Y. A noise estimation alggrithm with rapid adaptation for highly non- stationary environments[C]// Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP' 04). Montreal : ICASSP, 2004,1 ( 1 ) : 305-308.
  • 8杨行峻 迟惠生.语音信号数字处理[M].北京:电子工业出版社,1999..
  • 9张仁志,崔慧娟.基于短时能量的语音端点检测算法研究[J].电声技术,2005,29(7):52-54. 被引量:45

二级参考文献20

  • 1..http://spib.rice.edu/spib/select_noise.html.,.
  • 2M. Berouti, R. Schwartz, J. Makhoul. Enhancement of speech corrupted by acoustic noise. Proc. IF.F.F. ICASSP,Washinggton, DC, Apr. 1979; 208-211.
  • 3E Lockwood, J. Boudy. Experiments with a nonlinear spectral subtractor(NSS), hidden Markov models and projection for robust recognition in cars. Speech Communication. 1992; 11: 215-228.
  • 4Boh Lim Sim, Yit Chow Tong etc.. A parametric formulation of the generalized spectral subtraction method. IEEE.Transaction on Speech and Audio Processing. 1998; 6(4):328-337.
  • 5Nathalie Virag, Single channel speech enhancement based on masking properties of human auditory system. IEEE Transactions on Speech and Audio Processing. 1999; 7(2):126-137.
  • 6I. Cohen, B. Berdugo. Speech enhancement for nonstationary noise environments. Signal Processing. 2001; 81:2403-2418.
  • 7Y. Epharim, D. Malah. Speech enhancement using a minimum mean square log-spectral amplitude estimator.IEEE. Transactions on Acoustics. Speech, and Signal Processing. 1984; 32(6): 1109-1121.
  • 8E M. Crozier, B.M.G. Cheetham etc. Speech enhancement employing spectral subtraction and linear predictive analysis. Electronics Letters. 1993; 29 (12): 1094-1095.
  • 9R. Martin. Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE.Transactions on Speech and Audio Processing. 2001; 9(5):504-512.
  • 10T. Painter, A. Spanias. Perceptual coding of digital audio.Proe. Of the IEEE. 2000; 88(4): 451-512.

共引文献61

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部