期刊文献+

随机激励下非线性系统稳定性的判定方法与比较 被引量:2

COMPARISONS BETWEEN THE METHODS IN DETERMINING STABILITY OF STOCHASTICALLY NONLINEAR SYSTEMS
下载PDF
导出
摘要 在随机非线性系统稳定性的研究方面,近年来出现了随机Melnikov方法、相流函数法和安全盆法。对于这三种新的理论与计算方法的联系和对比,以仅受高斯白噪声激励下的杜芬系统为例进行了分析与探讨,进而对结果的差别进行了讨论。研究结果表明这三种方法在计算系统的稳定性阀值方面具有一致性。 For the researches on the stability of stochastically nonlinear systems, there appear some new methods in recent years, such as the stochastic Melnikov function, phase space flux and safe basin method. Making use of the dynamic theory, the Monte-Carlo method and Runge-Kutta algorithm, the relations and comparisons between the three novel methods mentioned above are analyzed via the studies on the typical Duffing oscillatory system excited by Gaussian white noise. The results show the consistency of these three methods in computing the threshold value for chaos onset in the system, and the causes of differences are also discussed.
出处 《振动与冲击》 EI CSCD 北大核心 2007年第11期112-114,152,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(10302025 10672140)
关键词 随机非线性系统 随机Melnikov函数 相流函数 安全盆 稳定性 stochastically nonlinear system, stochastic Melnikov function, phase space flux, safe basin, stability
  • 相关文献

参考文献11

  • 1李继彬.混沌与Melnikov方法[M].重庆:重庆大学出版社,1989..
  • 2高琴,黄东卫,王洪礼.一类非线性随机动力系统的应用研究[J].天津工业大学学报,2006,25(3):81-84. 被引量:1
  • 3Frey M, Simiu E. Noise-induced chaos and phase space flux [J]. Physics D,1993, 63: 321--340.
  • 4Hsieh S R, Troesch A W, Shaw S W. A nonlinear probabilistic method for predicting vessel capsizing in random beam seas [A]. Proc. R. Soc [C ]. Lond A, 1994, 446: 195--211.
  • 5Thompson J M T. Transient basins:a new tool for designing ships against capsize [ A ]. Proceedings in IUTAM Symposium on the Dynamics of Marine Vehicles and Structures in Waves [ C ]. London : 1990,325--331.
  • 6沈栋,黄祥鹿.随机波浪作用下的船舶倾覆[J].船舶力学,1999,3(5):7-14. 被引量:16
  • 7Mario S T F, Ricardo L V, Celso G. Erosion of the safe basin for the transversal scillations of a suspension bridge [ J ]. Chaos, Solitons and Fractals, 2003, 18: 829-841.
  • 8Soliman M S. Fractal erosion of basins of attraction in coupled non-linear systems [ J ]. Journal of Sound and Vibration, 1995, 182(5) : 729--740.
  • 9Shaw S W, Haddow A G, Hsieh S R. Properties of Cross- Well Chaos in an Impacting System [ J ]. Philosophical Transactions: Physical Science and Engineering, 1994, 347(1683) : 391-410.
  • 10Gan C. Noise-induced chaos and basin erosion in softening Duffing oscillator [ J ]. Chaos, Solitons and Fractals, 2005, 25 : 1069--1081.

二级参考文献7

共引文献25

同被引文献26

  • 1杨绍普,李韶华,郭文武.随机激励滞后非线性汽车悬架系统的混沌运动[J].振动.测试与诊断,2005,25(1):22-25. 被引量:22
  • 2杨晓丽,徐伟,孙中奎.谐和激励与有界噪声作用下具有同宿和异宿轨道的Duffing振子的混沌运动[J].物理学报,2006,55(4):1678-1686. 被引量:22
  • 3雷佑铭,徐伟.有界噪声和谐和激励联合作用下一类非线性系统的混沌研究[J].物理学报,2007,56(9):5103-5110. 被引量:11
  • 4Rokhinson L P, Liu X, Furdyna J K. The fractional a. c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles FJ~. Na- ture Physics, 2012, 8(11): 795-799.
  • 5Kolahchi M R, Shukrinov Y M, Hamdipour M, et al. Some chaotic features of intrinsically coupled Josephson junctions [J]. Physiea C: Superconductivity, 2013, 491 : 63-65.
  • 6Valenti D, Guarcello C, Spagnolo B. Switching times in long overlap Josephson junctions subject to thermal fluctuations and non-Gaussian noise sources [J]. Physi- cal Review B, 2014, 89(21) : 214510-214525.
  • 7Yamapi R, Filatrella G. Noise effects on a birhythmic Josephson junction coupled to a resonator [J]. Physical Review E, 2014, 89(5): 052905-052916.
  • 8Wei D Q, Zhang B, Qiu D Y, et al. Effect of noise on erosion of safe basin in power system [J]. Nonlinear Dynamics, 2010, 61(3): 477-482.
  • 9Liu D, Xu W, Xu Y. Noise-induced chaos in the elastic forced oscillators with real-power damping force [J]. Nonlinear Dynamics, 2013, 71(3): 457-467.
  • 10Dostal L, Kreuzer E. Surf-riding threshold of ships in random seas E J~. Proceedings in applied mathematics and mechanics, 2013, 13(1) : 383-384.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部