期刊文献+

结合SOM神经网络和混合像元分解的高光谱影像分类方法研究 被引量:4

Research on the Classification Based on SOM and LSMA for Hyperspectral Image
下载PDF
导出
摘要 本文对SOM神经网络算法进行改进,在标类的过程中采用3个策略加以控制,对初始产生的自组织映射图进行调整。通过改进,那些映射到可靠神经元的像素得到了很好的分类,而那些映射到不可靠神经元的像素都被作为不可分像元而提取出来。继而,从混合像元分解的角度来对这些不可分像元进行处理,按类型分解的思想确定混合像元的类别,实现对不可分像元的分类。将SOM神经网络和混合像元分解相结合的分类方法应用于高光谱图像的分类中,通过实验表明了该方法能较好地改善分类效果,提高分类精度。 In SOM algorithm it will create a map in output layer in which the cells are labeled class ID, e.g. 1, 2, 3, etc. It' s curial for correctly classifying the data to make map. In this paper, we focus our interests on analyzing the map and the process of creating map to improve the SOM. We take three measures to change the map. We can classify the pure pixels and find the mixed pixels through the changed map. Furthermore, we can process the unclassified pixels from the view of linear spectral mixture analysis (LSMA). Furthermore, we consider the two constraints: unnegative and the sum one, so the constraint spectral mixture analysis(CSMA) is applied in this paper. After CSMA, we assign the class ID to the endmember which has largest proportion in the mixed pixel. So, the spectral unmixing classification based on category proportion is performed to the unclassified pixels. Thus, we can get the extreme classification combining the former results. The experiment shows that the classification combined SOM with LSMA can get better classification results and well improve the classification accuracy.
出处 《遥感学报》 EI CSCD 北大核心 2007年第6期778-786,共9页 NATIONAL REMOTE SENSING BULLETIN
基金 国家863计划项目(编号:2003AA135010)资助 教育部国防基础科研项目(编号:A1420060213)资助
关键词 高光谱影像分类 SOM神经网络 混合像元分解 hyperspectral image SOM neural network linear spectral mixture analysis(LSMA)
  • 相关文献

参考文献16

  • 1Robert S Rand, Daniel M Keenan. A Spectral Mixture Process Conditioned by Gibbs-based Partitioning [ J ]. IEEE Trans. Geoscieace and Remote Sensing, 2001, 39(7) : 1421--1433.
  • 2Nirmal Keshava, John F Mustard. Spectral Unmixing[ J]. IEEE Signal Processing Magazine, 2002 : 44--57.
  • 3Chang C-I, Heinz D. Constrained Subpixel Detection for Remotely Sensed Images [ J ]. IEEE Trans. Geoscience and Remote Sensing, 2000, 38(3) : 1144--1159.
  • 4Chang C-I. Target Signature-constrained Mixed Pixel Classification for Hyperspectral Imagery [ J ].IEEE Trans. Geoscieace and Remote Sensing, 2002, 40 (5) : 1065--1081.
  • 5郭一平.用Kohonen神经网络对高光谱分辨率图像进行无监督分类的研究[J].红外与毫米波学报,1994,13(6):409-417. 被引量:5
  • 6哈斯巴干,马建文,李启青,戴芹.多波段遥感数据的自组织神经网络降维分类研究[J].武汉大学学报(信息科学版),2004,29(5):461-465. 被引量:11
  • 7张友水,冯学智,阮仁宗,麻土华.Kohonen神经网络在遥感影像分类中的应用研究[J].遥感学报,2004,8(2):178-184. 被引量:27
  • 8Ji C Y. Crop Classification Method Using a Self-organizing Neural Network[ R ].Interim Report on Crop Classification Using Neural Networks, 1999.
  • 9Matsumoto M ,Terayama Y, Araki K. Image Classification Based on Category Proportion Estimation [ J ]. Journal of Remote Sensing Society of Japan, 1993, 13(2) : 23--32.
  • 10朱述龙.基于混合像元的遥感图像分类技术[J].解放军测绘学院学报,1995,12(4):276-278.

二级参考文献16

  • 1Jayantha E Hierachical Maximum-Likelihood Classification for Improved Accuracies[J] . IEEE Transactions on Geoscience and Remote Sensing, 1997,35(4) : 1122-1143.
  • 2Iio Y, Omatu S. Category Classification Method Using A Self- organizing Neural Network [ J ] . INT J Remote Sensing, 1997, 18 ( 4 ) :829-845.
  • 3Justin D, et al. The Effect of Neural-Network Structure on a Multispectral Land-Use/Land-Cover Classification [ J ] . Photogrammetric Engineering & Remote Sensing, 1997, 63(5) : 535-544.
  • 4Ji C Y. Crop Classification Method Using a Self-organizing Neural Network[ R]. Interim Report on Crop Classification Using Neural Networks, 1999.
  • 5Cortijo F J, Perez De La blanca N. A Comparative Study of Some Nonparametric Spectral Classifiers [ J ] . Applications to problems with high overlapping training sets Int J Remote Sensing, 1997,18(6) :1259-1275.
  • 6薛永祺,红外与毫米波学报,1992年,11卷,168页
  • 7Xue Y Q,1990年
  • 8张孝灿,黄智才,赵元洪.遥感数字图像处理.杭州:浙江大学出版社,1997
  • 9Jorge N,Xavier O,Octavi F,et al.Multiresolutionbased Image Fusion with Additive Wavelet Decomposition.IEEE Transactions on Geoscience and Remoto Sensing,1999,37(3): 1204~1211
  • 10Kohonen T.Self-organizated Formation of Topologically Correct Feature Maps.Biological Cybernetics,1982,43:59~69

共引文献72

同被引文献198

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部