期刊文献+

基于MRF随机场和广义混合模型的遥感图像分级聚类 被引量:3

Remote Sensing Images Hierarchical Clustering Using Markov Random Field and Generalized Gaussian Mixture Models
下载PDF
导出
摘要 有限混合模型FM的分级聚类已广泛应用于不同领域,然而,它的计算复杂度与观测数据的平方成正比,因此,在海量数据方面的应用就受到了限制。另一方面,多光谱图像数据中同时包含有空间和光谱两类信息,但大多数基于像素的多光谱图像聚类方法,仅使用了其频谱信息而忽视了空间信息。本文提出了一种新的基于广义有限混合模型GFM的分级聚类方法,该算法把MRF随机场和GFM模型结合在一起,分类数可以通过PLIC准则自动确定。算法在执行过程中,采用K均值聚类方式获得过分类图像,分级聚类从过分类图像开始,代替原来从单点类开始的方式,这样可以方便获取GFM模型成分密度的初始参数。最后,采用由Gibbs采样器生成的仿真测试图对算法的精度进行了定量评价,通过与K均值聚类和FM聚类的比较说明了本文算法的优越性,同时用荷兰Flevoland农业地区的极化SAR图像验证了本文算法的有效性。 Hierarchical clustering based on the finite mixture model(FM) has shown very good performance in a number of fields. However, it generally requires storage and computing at least proportional to the square of the dimension of observations, so that its application to large datasets has been hindered by time and memory complexity. Another, muhispectral images provide detailed data with information in both the spatial and spectral domains. But many clustering methods for muhispectral images are based on a per-pixel classification, while uses only spectral information and ignores spatial information. In this work, a new hierarchical clustering based on GFM model, suitable for large datasets, e. g. , multispectral remote sensing images, is proposed. This algorithm integrates with GFM model with Markov random field. The number of clusters is automatically identified by using the pseudolikelihood information criterion (PLIC). An oversegmented image is obtained by a simple K-means clustering method. Instead of starting with singleton clusters, hierarchical clustering is applied on the oversegmented image. Initial parameters of component densities of GFM model can be easily extracted. At last, the accuracy of the algorithm is quantitatively evaluated through simulated test image generated by using Gibbs sampler. The experiment show a superior performance compared to several other methods, such as K-means and classical hierarchical clustering based on the classical FM model. Its validity is also illustrated by using a polarimetric SAR image of Flevoland in the Netherlands.
出处 《遥感学报》 EI CSCD 北大核心 2007年第6期838-844,共7页 NATIONAL REMOTE SENSING BULLETIN
基金 国家"973"重点基础研究发展规划(编号:2003CB716101)项目
关键词 FM模型 广义Gaussian混合模型 MARKOV随机场 EM算法 AHC聚类 finite mixture model generalized gaussian mixture model Markov random field expectation maximization algorithm agglomerative hierarchical clustering
  • 相关文献

参考文献11

  • 1Posse C. Hierarchical Model-based Clustering for Large Datasets [J]. Comput. Graph. Statist, 2001, 10: 464--486.
  • 2Chris Fraley, Adrian E Raftery. Model Based Clustering, Discriminant Analysis, and Density Estimation [ J ]. Journal of the American Statistical Association, 2002, 97 ( 458 ) : 611 --631.
  • 3Chris Fraley. Algorithms for Model-based Gaussian Hierarchical Clustering[ J]. SIAM Journal on Scientific Computing, 1998, 20 : 270--281.
  • 4Wehrens R, Buydens Clustering for Image L M C, Fraley C, et al Segmentations and Large Sampling [ R ]. Department of Statistics Washington, 2003 Model-based Datasets Via University of
  • 5Thanh N Tran, Ron Wehrens, Dirk H Hoekman, et al. Initialization of Markov Random Field Clustering of Large Remote Sensing Images [ J ]. IEEE Trans. on Geoscience and Remote Sensing, 2005, 43(8): 1912--1919.
  • 6Julian Besag. On the Statistical Analysis of Dirty Pictures [ J ]. Journal of the Royal Statistical Society, Series B (Methodological) , 1986, 48(3) : 259 --302.
  • 7Stan Z Li. Markov Random Field Modeling in Image Analysis [ M ]. New York: Springer-Verlag Tokyo, 2001.
  • 8Sanjay-Gopal S, Thomas J Hebert. Bayesian Pixel Classification Using Spatially Variant Finite Mixtures and the Generalized EM Algorithm[J]. IEEE Trans. on Image Processing, 1998, 7(7) : 1014--1028.
  • 9Dempster A P, Laird N M, Rubin D B. Maximum Likelihood for Incomplete Data Via the EM Algorithm[ J]. Journal of the Royal Statistical Society, Series B(Methodological) , 1977, 39 : 1--38.
  • 10Blekas K, Likas A, Galatsanos N P, et al. A Spatially Constrained Mixture Model for Image Segmentation [ J]. IEEE Trans. on Neural Netwoks, 2005, 16(2) : 494--498.

同被引文献45

  • 1李德仁.利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28(S1):7-12. 被引量:230
  • 2郭小卫,田铮,刘保利.小波域隐Markov树模型的图像去噪快速算法[J].西北工业大学学报,2004,22(4):457-462. 被引量:2
  • 3陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320. 被引量:245
  • 4余鹏,张震龙,侯至群.基于高斯马尔可夫随机场混合模型的纹理图像分割[J].测绘学报,2006,35(3):224-228. 被引量:17
  • 5李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 6Thanh N Tran,Ron Wehrens,Dirk H Hoekman, et al. Initialization of Markov random field clustering of large remote sensing images[J]. IEEE Trans. on Geoscience and Remote Sensing, 2005,43(8) : 1912 - 1919.
  • 7Julian Besag. On the statistical analysis of dirty pictures [ J ]. Journal of the Royal Statistical Society, Ser&s B (Methodological), 1986,48(3) :259 - 302.
  • 8Schroder M, Rehrauer H, Seidel K, Datcu M. Spatial information retrieval from remote-sensing images: Ⅱ Gibbs-Markov random fields [ J ].IEEE Transaction on Geoscience and Remote Sense, 1998,36(5) : 1446 - 1455.
  • 9Terrence Chen, Thomas S Huang, Zhi-pei Liang. Segmentation of brain MR images using hidden Markov random field model with weighting neighborhood system[ A]. Nuclear Science Symposium Conference Record[ C]. Roma, Italy: IEEE. Press, 2004. 3209 - 3212.
  • 10Zhigan Peng,William Wee, and Jing-Huei Lee. MR brain imaging segmentation based on spatial Gaussian mixture model and Markov random field [ A ]. Proceedings of IEEE International Conference on Image Processing[ C]. Genoa, Italy: IEEE. Computer Society Press, 2005.13 - 16.

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部