摘要
利用经验过程中已有的概率不等式及欧拉加权系数的性质,研究经验过程中独立同分布随机元序列的欧拉可求和性,得到了经验过程欧拉强大数定律成立的充分条件(E‖f(X0)‖G2<∞).在相同条件下,将经验过程中的欧拉弱大数定律推广到强收敛情形.
With the probability inequality obtained in empirical processes and nature of the Euler weighting coefficients, the Euler summability of a sequence of random elements independent and identically distributed in empirical processes was investigated. The sufficient condition (E||f(X0)||&^2〈∞) is obtained for the Euler strong law of large numbers in empirical processes. Under identical conditions, the Euler weak law of large numbers in empirical processes was spread to the situation of strong convergence.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2007年第6期899-902,共4页
Journal of Jilin University:Science Edition
基金
湖北省自然科学基金(批准号:2004ABA016)
关键词
经验过程
随机元的加权和
随机有界
大数定律
empirical processes
weighted sums of random elements
bounded in probability
law of large numbers