摘要
LiNi1/3Co1/3Mn1/3O2 was synthesized by sol-gel method and effect of calcination temperature on characteristics of LiNi1/3Co1/3Mn1/3O2 cathode was investigated. The structure and characteristics of LiNi1/3Co1/3Mn1/3O2 were determined by XRD, SEM and electrochemical measurements. The results show that the compound LiNi1/3Co1/3Mn1/3O2 has layered structure with hexagonal lattice. With the increase of calcination temperature, the basicity of the material decreases, and the size of primary particle rises. The LiNi1/3Co1/3Mn1/3O2 calcined at 900 ℃ for 12 h shows excellent electrochemical performances with large reversible specific capacity of 157.5 mA·h/g in the voltage range of 2.75-4.30 V and good capacity retention of 94.03% after 20 charge/discharge cycles. Capacity of LiNi1/3Co1/3Mn1/3O2 increases with enhancement of charge voltage limit, and specific discharge capacities of 179.4 mA·h/g, 203.1 mA·h/g are observed when the charge voltages limit are fixed at 4.50 V and 4.70 V, respectively.
LiNi1/3Co1/3Mn1/3O2 was synthesized by sol-gel method and effect of calcination temperature on characteristics of LiNi1/3Co1/3Mn1/3O2 cathode was investigated. The structure and characteristics of LiNi1/3Co1/3Mn1/3O2 were determined by XRD, SEM and electrochemical measurements. The results show that the compound LiNi1/3Co1/3Mn1/3O2 has layered structure with hexagonal lattice. With the increase of calcination temperature, the basicity of the material decreases, and the size of primary particle rises. The LiNi1/3Co1/3Mn1/3O2 calcined at 900 ℃ for 12 h shows excellent electrochemical performances with large reversible specific capacity of 157.5 mA-h/g in the voltage range of 2.75-4.30 V and good capacity retention of 94.03% after 20 charge/discharge cycles. Capacity of LiNi1/3Co1/3Mn1/3O2 increases with enhancement of charge voltage limit, and specific discharge capacities of 179.4 mA.h/g, 203.1 mA.h/g are observed when the charge voltages limit are fixed at 4.50 V and 4.70 V, respectively.
出处
《中国有色金属学会会刊:英文版》
EI
CSCD
2007年第6期1307-1311,共5页
Transactions of Nonferrous Metals Society of China
基金
Project (2007CB613607) supported by the National Basic Research Program of China
Project (2005037698) supported by the Postdoctoral Science Foundation of China