摘要
在运用浮点遗传算法的多目标全系数模糊非线性规划中,提出交互模糊满意方法.引入α-水平集把MOFNLP转化为α-MONLP.通过线性隶属函数量化.给出具体的α水平度和参考隶属度,利用浮点遗传算法解最小值问题得到Pareto最优解,并通过调整α水平度和参考隶属度使决策者从多个Pareto最优解中得到满意解.
we focus on multi-objective full coefficient fuzzy nonlinear programming problem and an interactive satifying method is presented by using floating point genetic algorithms. With α-level sets of fuzzy numbers introduced, the corresponding non-fuzzy αprogramming problem is introduced. The fuzzy goals of decision marker for a objective function are quantified by eliciting the corresponding linear membership function . If the DM specifies the degree αand reference membership values, the Correspondingly extended Pareto optimal solution can be obtained by solving the minimum problem through genetic algorithms with float points.
出处
《甘肃科学学报》
2007年第4期23-25,共3页
Journal of Gansu Sciences
关键词
多目标模糊非线性规划
遗传算法
交互方法迭代方法
multi-objective fuzzy nonlinear programming
genetic algorithm
interactive method.