摘要
分别简述并证明了含有吸收项和对流项的非Newton渗流方程ut=div[(|▽u|2+ε)p2-2 ▽u]+xibi(u)+uq,(x,t)∈Bε-1×(0,T)对于边值问题:u(x,t)=0,|x|=ε-1的条件下的古典解的估计∫Bε-1ukε(x,t)dx+∫∫0tBε-1(uεk)qdxdτ≤1及初值问题:u(x,0)=kNh(kx),x∈Bε-1的条件下的古典解的估计∫0T∫Bε-1[1(+u(εk)uαεk-)1α]2|▽uεk|pdxdt≤C(α).
This paper is mainly estimate∫Bε^-1 uk^ε(x,t)dx+∫0^t∫Bε^-1(uk^ε)^qdxdτ≤1 when boundary value problem:u(x,t)=0,│x│=ε^-1 and estimate ∫0^T∫Bε^-1(uk^ε)^α-1/[1+(uk^ε)^α]^2│△↓uk^│^p dxdt≤C(α) when initial value problem:u(x,0)=k^Nh(kx),x∈Bε^-1 of classical solutions u(x, y) for non-Newton filtration equations with absorption and convection:ut=div[(│△↓u│^2+ε)^p-2/2 △↓u]δ/δxi bi(u)+u^q(x,t)∈Bε^-1×(0,T).
出处
《吉林建筑工程学院学报》
CAS
2007年第4期92-94,共3页
Journal of Jilin Architectural and Civil Engineering
关键词
吸收项
对流项
非Newton渗流方程
古典解
absorption
convecton
non-Newton filtration equations
classical solutions