摘要
讨论复杂区域上的一种结构网格生成方法,其主要思想是:以变分形式的Winslow网格生成方法为基础,通过引入网格解扭机制和网格面积均匀化技术,构造出一种新的离散泛函,进而采用一类优化算法求解这一离散泛函的极小化问题,得到所希望的网格.通过分析及大量数值实验表明,这一方法比较健壮,针对二维复杂区域通常能够生成几何品质较优的网格,它在保持Winslow方法优点的同时,克服了它的一些缺点.
A structured grid generation method for domains with complicated boundary is discussed. Based on the Winslow method with variational form, and combined with grid untangling and area averaging technologies, a discrete functional is designed. The minimization of the discrete functional is solved by an optimization algorithm, and good grids are generated. Numerical experiments show that the method is robust and generates grids with good geometric qualities on complicated domains. This method inherits advantages of the Winslow method and overcomes some faults.
出处
《计算物理》
CSCD
北大核心
2007年第6期647-654,共8页
Chinese Journal of Computational Physics
基金
国家重点基础研究发展计划(973计划)(2005CB321703)
国家自然科学基金(10431050)
计算物理实验室试点基金(51479010205ZW0901
A1520070074)资助项目
关键词
网格生成
变分
优化
网格解扭
grid generation
variational method
optimization
grid untangling