期刊文献+

氮化硼纳米管阵列储氢的计算机模拟 被引量:1

Simulation of Hydrogen Storage in Boron Nitride Nanotube Arrays
下载PDF
导出
摘要 采用巨正则蒙特卡罗方法模拟常温、中等压强下单壁氮化硼纳米管阵列的物理吸附储氢,重点研究压强、纳米管阵列的管径和管间距对单壁氮化硼纳米管阵列物理吸附储氢的影响.计算结果表明,氮化硼纳米管阵列的储氢性能明显优于碳纳米管阵列,在常温和中等压强下的物理吸附储氢量(质量百分数)可以达到和超过美国能源部提出的商业标准.并给出相应的理论解释. By the grand canonical Monte Carlo method, physisorption of hydrogen storage in single-walled boron nitride nanotube arrays (SWBNNTA) at moderate pressure with normal temperature is studied. The influences of tube diameter, distance between tubes and pressure on hydrogen physisorption in SWBNNTA are investigated. It indicates that at normal temperature and moderate pressure the hydrogen storage capacity (mass percent) of SWBNNTA is obviously greater than that of single-walled carbon nanotube arrays, and exceeds the commercial standard presented by U.S. Department of Energy. Corresponding theoretical explanation is given.
出处 《计算物理》 EI CSCD 北大核心 2007年第6期740-744,共5页 Chinese Journal of Computational Physics
关键词 单壁氮化硼纳米管阵列 物理吸附 储氢 巨正则蒙特卡罗模拟 single-walled boron nitride nanotube arrays physisorption hydrogen storage grand canonical Monte Carlo simulation
  • 相关文献

参考文献22

  • 1Iijima S. Helical microtubules of graphitic carbon[ J ]. Nature, 1991, 354 : 56 - 59.
  • 2Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J. Storage of hydrogen in single-walled carbon nanotube [J]. Nature, 1997, 386: 377-379.
  • 3Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M, Dresselhaus M S. Hydrogen storage in single-walled carbon nanotubes at room temperature[ J ]. Science, 1999, 256 : 1127 - 1129.
  • 4Chen P, Wu X, Lin J, Tan K L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J]. Science, 1999, 285: 91- 93.
  • 5Lee S M, Lee Y H. Hydrogen storage in single-walled carbon nanotubes[J]. Appl Phys Lett, 2000, 76: 2877- 2879.
  • 6Williams K A, Eklund P C. Monte Carlo simulations of H2 physisorption in finite-diameter carbo nanotube ropes[J]. Chem Phys Lett, 2000, 320:352 - 358.
  • 7Cheng J R, Yuan X H, Zhao L, Huang D C, Zhao M, Dai L, Ding R. GCMC simulation of hydrogen physisorption on carbon nanotubes and nanotube arrays [J]. Carbon, 2004, 42: 2019- 2024.
  • 8Cheng J R, Yan H, Chen Y, Zhang L B, Zhao L, Huang D C, Tang R H. Computer simulations of hydrogen storage in single-walled carbon nanotubes[J]. Chinese J Comput Phys, 2003, 20(3) : 255 - 258.
  • 9Cheng J R, Yuan X H, Zhao M, Huang D C, Zhao L, Zhang L B. Effects of carbon nanotube structure and size on hydrogen physisorption[ J ]. Chinese J Comput Phys, 2005,22 ( 1 ) : 70 - 76.
  • 10Rubio A, Corkill J L, Cohen M L. Theory of graphitlc boron nitride nanotubes[J]. Phys Rev B, 1994, 49:5081 - 5084.

二级参考文献23

  • 1DWHeermann 秦克诚译.理论物理学中的计算机模拟方法[M].北京大学出版社,1996..
  • 2Dodziuk H, Dolgonos G. Molecular modeling study of hydrogen storage in carbon nanotubes[J]. Chem. Phys. Lett., 2002, 356: 79~83.
  • 3Liu C, Yang Q H, Tong Y, et al. Volumetic hydrogen storage in single-walled carbon nanotubes[J]. Appl. Phys. Lett., 2002, 80: 2389~91.
  • 4Volpe M, Cleri F. Role of surface chemistry in hydrogen adsorption in single-wall carbon nanotubes[J]. Chem. Phys. Lett., 2003, 371: 476~82.
  • 5Ci L J, Zhu H W, Wei B Q, et al. Annealing amorphous carbon nanotubes for their application in hydrogen storage[J]. Appl. Surf. Sci., 2003, 205: 39~43.
  • 6Wang Q Y, Johnson J K. Computer sisulation of hydrogen adsorption on graphite nanofibers[J]. J. Phys. Chem.,1999, B103: 277~81.
  • 7Wang Q Y, Johnson J K. Optimization of carbon nanotube arrays for hydrogen adsorption[J]. J. Phys. Chem.,1999, B103: 4809~13.
  • 8Wang Q Y, Johnson J K. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores[J]. J. Chem. Phys., 1999, 110: 577~86.
  • 9Williams K A, Eklund P C. Monte carlo simulation of H2 physisorption in finite-diameter carbon nanotube ropes[J]. Chem. Phys. Lett., 2000, 320: 352~8.
  • 10Crowell A D, Brown J S. Laterally averaged interaction potentials for 1H2 and 2H2 on the (0001) graphite surface[J]. Surf. Sci., 1982, 123: 296~304.

共引文献16

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部