期刊文献+

满足瞬时动态DT/RC的动态拥挤收费模型研究 被引量:1

Research on a Dynamic Congestion Pricing Model for Instantaneous Dynamic Departure Time /Route Choice
下载PDF
导出
摘要 出行者的出行选择当中,除了路径选择之外,出发时间也是一个重要的因素.在面临拥挤收费时,出行者往往要重新选择自己的出发时间,以避免多交费,同时还要尽量在规定的时间内到达.运用双层规划模型和变分不等式相结合的方法,建立满足动态用户最优出发时间/路径选择条件的时变拥挤收费策略模型.表示为双层规划模型:上层模型确定收费路段在离散化的每个小时段的收费,以交通系统性能在各离散时段内达到最优为目标,进而使整个高峰时段的交通状况趋于平稳;下层模型表示瞬时动态用户均衡的出发时间/路径选择. Departure time choice is also very important to travelers in addition to the route ChOiCe. lraveLers will always change their departure time when facing the congestion pricing to avoid overcharge while trying to reach the destination within the decided time. A dynamic congestion pricing model satisfying the instantaneous dynamic departure time choice and route choice is established, which is represented by a bi-level model. The upper level of model is aimed at optimizing the whole transportation system in all the discrete intervals by determining the ex- act price in each small time interval, by which the whole transportation system will be in a very stable situation. The lower level model show that the instantaneous dynamic user equilibrium satisfying the departure time choice and route choice, which is represented as a VI problem.
出处 《昆明理工大学学报(理工版)》 2007年第3期108-112,共5页 Journal of Kunming University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(项目编号:70371013)
关键词 智能交通系统 动态交通分配 双层模型 inrelligent transportation system dynamic traffic assignment bi-level model
  • 相关文献

参考文献9

  • 1Merchant D K,Nemhauser G L.A Model and an Algorithm for the Dynamic Traffic Assignment[J].Transportation Science,1976,12,62-77.
  • 2Friesz T L,Luque F J,Tobin R L,et al.Dynamic Network Traffic Assignment Considered as a Continuous Time Optimal Control Problem[J].Operations Research,1989,37:893 -901.
  • 3Ran B,Boyce D E,LeBlanc L J.A New Class of Instantaneous Dynamic User-Optimal Traffic Assignment Models[J].Operations Research,1993,41 (1):192-202.
  • 4Ran B,Boyce D E,LeBlanc L J.Dynamic User-Optimal Departure Time and Route Choice Model:a Bilevel,Optimal-Control Formulation.ADVANCE Working paper,12.Urban Transportation Center,University of Illinois at Chicago,1992.
  • 5Ran B,Hall R W,Boyce D E.A Link-Based Variational Inequality Model for Dynamic Departure Time/Route Choice[J].Transportation Research B,1996,30(1):31 -46.
  • 6Huang H J,Lam W H K.Modeling and Solving the Dynamic User Equilibrium Route and Departure Time Choice Problem in Network with Queues[J].Transportation Research B,2002,36:253 -273.
  • 7Szeto W Y,Lo H K.A Cell-Based Simultaneous Route and Departure Time Choice Model with Elastic Demand[J].Transportation Research B,2004,38:593 -612.
  • 8周溪召,张华歆.基于拥挤收费的动态出发时间选择[J].上海理工大学学报,2005,27(6):543-546. 被引量:1
  • 9任华玲,高自友.瞬时动态用户最优问题的统一模型及算法研究[J].土木工程学报,2003,36(7):95-99. 被引量:12

二级参考文献15

  • 1Merchant D K, Nemhauser G L . A Model and an algorithm for the dynamic traffic assignment[J].Transportation Science, 1976b, 12, 62-77.
  • 2Friesz T L, Luque F J, Tobin R L, et al . Dynamic network traffic assignment considered as a continuous time optimal control problem[J]. Operations Research,1989, 37, 893-901.
  • 3Ran B, Boyce D E, LeBlanc L J . Anew class of instantaneous dynamic user-optimal traffic assignment models[J]. Operations Research, 1993, 41(1), 192-202.
  • 4Ran B, Boyce D E. Modeling Dynamic Transportation Network[M]. 1996, Springer.
  • 5Chen H K, Dynamic travel choice model--a variational inequality approach[M]. Springer, 1999.
  • 6Zhu D L, Marcotte P. On the existence of solutions to the dynamic user equilibrium problem[J] . Transportation Science, 2000, 34(4), 402-414.
  • 7Hendrickson C,Plank E.The flexibility of departure times for work trips [J].Transportation Research Part A,1984,18 (1):25 - 36.
  • 8Mahmassani H S,Herman R.Dynamic user equilibrium departure time and route choice on idealized traffic arterial[J].Transportation Science,1984,18(4) :362-384.
  • 9Ran B,Randolph H,David E,et al.A link-based variational inequality model for dynamic departure time/route choice[ J ].Transportation Research B,1996,30(1):31-46.
  • 10Gabay D.Applications of the method of multipliere to variational inequalities [ A ].Fortin and Glowinski eds.Augmented Lagrangian Methods:Applications to the Numerical Solution of Boundary-Value Problems [C].Amsterdam:North-Holland,1983.79-85.

共引文献11

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部