期刊文献+

基于多线索的车辆跟踪方法研究 被引量:1

Research on Vehicle Tracking Algorithm Based on Multiple Clues
下载PDF
导出
摘要 针对车载摄像机的汽车辅助驾驶系统,提出了一种基于多线索的车辆跟踪算法。利用运动估计预测目标在下一帧的感兴趣区域,即跟踪窗。在跟踪窗内联合使用车辆的先验知识、评估环节、分块模板等线索定位车辆目标。在跟踪过程中,提出去除误识别的措施。这种基于多线索的车辆跟踪方法实现了对后方多车辆的稳定跟踪,也适合前视车辆。实验结果表明该算法是鲁棒和准确的。 The multi-clue vehicle tracking algorithm in image sequences was proposed for driver assistance system. Images were acquired by a camera installed at a moving vehicle. Firstly the regions of interest which contained the target in the next frame, namely tracking windows, were predicted by motion estimator. Multiple clues, such as prior knowledge of vehicle, assessment component, division block template etc, were integrated to locate the vehicle target in the tracking window. Measure of removing false positive was proposed in the tracking process. The vehicle observed in rear view could be tracked stably by the multi-clue vehicle tracking algorithm. The approach is suitable for tracking vehicles observed in frontal view. Experiment results illustrate the robust and accurate performance of the tracking algorithm.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第22期5299-5303,共5页 Journal of System Simulation
基金 国家自然科学基金项目(60475036) 国家教育部博士点基金(20040145012)。
关键词 车辆跟踪 跟踪窗 先验知识 评估环节 模板匹配 vehicle tracking tracking window priori knowledge assessment component template matching
  • 相关文献

参考文献14

  • 1N Srinivasa. A Vision-Based Vehicle Detection and Tracking Method for Forward Collision Warning [C]// Proc. IEEE Intelligent Vehicle Symposium. Paris, France: IEEE press, 2002, 2: 621-631.
  • 2Margrit Betke, Esin Haritaoglu, Larry S Davis. Real-time multiple vehicle detection and tracking from a moving vehicle [J]. Machine Vision and Applications (S1432-1769), 2000, 12(2): 69-83.
  • 3G Lefaix, T Marchand, P Bouthemy. Motion-Based Obstacle Detection and Tracking for Car Driving Assistance [C]// Proc. 16th Int'l Conf. Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2002, 4: 74-77.
  • 4X Li, X Yao, Y Murphey, R Karlsen, G Gerhan. A Real Time Vehicle Detection and Tracking System in Outdoor Traffic Scenes [C]// Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE Computer Society Press, 2002, 4: 74-77.
  • 5毛燕芬,施鹏飞.基于采样理论的序列蒙特卡罗车辆跟踪算法[J].系统仿真学报,2004,16(11):2520-2521. 被引量:2
  • 6张传斌,田蔚风,金志华.UKF滤波方法及其在车辆导航状态估计中的应用(英文)[J].系统仿真学报,2005,17(6):1456-1458. 被引量:14
  • 7赵英男,杨静宇.一种改进的Gabor滤波器特征抽取算法及其应用[J].系统仿真学报,2005,17(9):2236-2238. 被引量:6
  • 8曾智洪.高速公路中的行车道检测和车辆跟踪(英文)[J].自动化学报,2003,29(3):450-456. 被引量:11
  • 9Zehang Sun, George Bebis, Ronald Miller. On-road vehicle detection: a review [J]. IEEE Trans Pattern Analysis and machine intelligence (S0162-8828), 2006, 28(5): 694-711.
  • 10Ping Fu, Weijia Liu, Dingyu Xue, Xinhe Xu, Daoxiang Gao. Research on occlusion in the multiple vehicle detecting and tracking system [C]// IEEE proceedings of the sixth world congress on intelligent control and automation. Dalian, China: Dalian University of Technology Press, 2006, 12: 10430-10434.

二级参考文献23

  • 1Bertozzi M, Broggi A. GOLD: A parallel real time stereo vision system for generic obstacle and lane detection.IEEE Transactions on Image Processing, 1998,7(1): 62-81.
  • 2Tan T N, Sullivan G D, Baker K D. Model-based localization and recognition of road vehicle. International Journal of Computer Visoin, 1998,27(1): 5-25.
  • 3Tan T N, Baker K D. Efficient image gradient based vehicle location. IEEE Transactions on Image Processing,2000, 9(8) : 1343- 1356.
  • 4Press W S, Teukolsky S A, Vetterling W T, Flannery B P. Numerical Recipes in C(2nd Edition). London: Cambridge University Press, 1992.
  • 5Bertozzi M, Broggi A, Fascioli A. Vision-based intelligent vehicles: State of the art and perspectives. Journal of Robotics and Autonomous Systems, 2000.32(1) :1 - 16.
  • 6Masaki I Editor. Vision-Based Vehicle Guidance. Berlin: Springer Verlay, 1992.
  • 7Weber J, Koller D. l.uong Q T. Malik J. An integrated stereo-based approach to automatic vehicle guidance. In:Proceedings of ICCV. 1995. 12--20.
  • 8Smith S, Brady J. ASSET-2 : Real time motion segmentation and shape tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(8) : 814-829.
  • 9Bertozzi M, Broggi A, Castelluccio S. A real lime oriented system for vehicle detection. Journal of Systems Architecture, 1997. 43(2) :317--325.
  • 10Ferryman J M, Maybank S J, Worrall A D. Visual surveillance for moving vehicles. International Journal of Computer Visoin, 2000,37(2):187-198.

共引文献29

同被引文献14

  • 1李根国,桂亚东,刘欣.浅谈高性能计算的地位及应用[J].计算机应用与软件,2006,23(9):3-4. 被引量:15
  • 2Randal L S,Tom P.Learning Perl. . 2009
  • 3Wu Z,Xie M,Tian Yu.Optimization design of the X&S charts for monitoring process capability. Jour-nal of Manufacturing Systems . 2002
  • 4Yin Xiaoming,Xie M.Finger identification in handgesture based Human-Robot interaction. Roboticsand Autonomous Systems . 2001
  • 5Rinaldo Christian Tanumara,Xie M,Au Chi Kit.Learning Human-like color categorization through in-teraction. International Journal of ComputationalIntelligence . 2006
  • 6Guo Dong,Ming Xie.Color clustering and learning for image segmentation based on neural networks. IEEE Transactions on Neural Networks . 2005
  • 7Bertozzi M,Broggi A.GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Transactions on Image Processing . 1998
  • 8Scott Meyers.More Effective C++. . 2003
  • 9Hudak,P.Conception, Evolution, and Application of Functional Programming Languages. ACM Computing Surveys . 1989
  • 10P. Singh.The So-called Fibnonacci Numbers in Ancient and Medieval India. Historia Mathematica . 1985

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部