期刊文献+

涨落对几何量子门的影响

Influence of the noise on geometric quantum gates
下载PDF
导出
摘要 研究了几何量子门抵抗控制外场随机涨落的能力。在用周期微扰近似代替随机涨落下的研究表明:无论是绝热的Berry几何相还是非绝热的Aharonov-Anandan(A-A)几何相,其抗涨落的能力都和其对应的动力学相位的抗涨落能力相当。而Berry相位(几何相位,动力学相位)的抗涨落能力要远强于A-A位相,可视为由绝热近似导致这种差别。此外验证了利用正交态方案构造的量子门具有很强的抗涨落能力。 The ability of geometric quantum gate against the fluctuations of control external field was researched. We replace the random fluctuations by the periodic perturbation. In this approximation, the result shows that no matter the Berry geometry phase or the Aharonov- Anandan (A-A)"geometry phase has the same ability against the stochastic fluctuations as their corresponding dynamics phases. And numerical results also justify that the Berry phase is more powerful to resist the external field fluctuation than that of the A-A phase. We believe that this distinction is caused by adiabatic approximation purely. Lastly, it is validated that the geometry quantum gates constructed by an orthogonal state scheme are more powerful. against the fluctuations.
作者 周明 胡连
出处 《量子电子学报》 CAS CSCD 北大核心 2007年第4期469-474,共6页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金(10474022 10204008) 教育部科学技术研究重点项目基金(205113)资助课题
关键词 量子信息 几何量子计算 涨落 正交态方法 quantum information geometry quantum computation fluctuation orthogonal state method
  • 相关文献

参考文献17

  • 1Vion D,Aassime A,Cottet A,et al.Manipulating the quantum state of an electrical circuit[J].Science,2002,296:886-889.
  • 2Berry M V.Quantum phase factors accompanying adiabatic changes[J].Proc.R.Soc.London Ser.A,1984,392:45-57.
  • 3Aharonov Y,Anandan J.Phase change during a cyclic quantum evolution[J].Phys.Rev.Lett.,1987,58:1593-1596.
  • 4Wang X B,Kei J M.Non-adiabatic conditional geometric phase shift with NMR[J].Phys.Rev.Lett.,2001,87:097901-1-097901-4.
  • 5Zanardi P,Rasetti M.Holonomic quantum computation[J].Phys.Rev.A,1999,264:94-99.
  • 6Pachos J,Zanardi P,Rasetti M.Non-Abelian Berry connections for quantum computation[J].Phys.Rev.A,2002,61:010305-1-010305-4.
  • 7Jones J A,Vedral V,Ekert A,et al.Geometric quantum computation using nuclear magenetic resonance[J].Nature,2000,403:869-871.
  • 8Duan L M,Cirac J I,Zoller P.Geometric manipulation of trapped ions for quantum computation[J].Science,2001,292:1695-1697.
  • 9Chiara G D,Palma G M.Berry phase for a spin 1/2 particle in a classical fluctuating field[J].Phys.Rev.Lett.,2003,91:090404-1-090404-4.
  • 10Blais A,Tremblay A M S.Effect of noise on geometric logic gates for quantum computation[J].Phys.Rev.A,2003,67:012308-1-012308-6.

二级参考文献45

  • 1陈宗海,董道毅.量子控制论[J].量子电子学报,2004,21(5):546-554. 被引量:8
  • 2Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403869.
  • 3Wang X B and Matsumoto K 2001 Phys. Rev. Lett. 87 97901 Wang X B and Matsumoto K 2002 Phys. Rev. Lett. 88 179901.
  • 4Wang X B and Matsumoto K 2002 Phys. Rev. B 65 172508.
  • 5Falci G et al 2000 Nature 407 355.
  • 6Duan L M, Cirac J I and Zoller P 2001 Science 292 1695.
  • 7Berry M V 1984 Proc. Roy. Soc. London A 392 45.
  • 8Cory D G, FahmyA Fand HavelT F 1997 Proc. Nat. Acad. Sci.USA 94 1634.
  • 9Gershenfeld N A and Chung I L 1997 Science 275 350.
  • 10Jones J A and Mosca M 1998 J. Chem. Phys. 109 1648.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部