摘要
研究了几何量子门抵抗控制外场随机涨落的能力。在用周期微扰近似代替随机涨落下的研究表明:无论是绝热的Berry几何相还是非绝热的Aharonov-Anandan(A-A)几何相,其抗涨落的能力都和其对应的动力学相位的抗涨落能力相当。而Berry相位(几何相位,动力学相位)的抗涨落能力要远强于A-A位相,可视为由绝热近似导致这种差别。此外验证了利用正交态方案构造的量子门具有很强的抗涨落能力。
The ability of geometric quantum gate against the fluctuations of control external field was researched. We replace the random fluctuations by the periodic perturbation. In this approximation, the result shows that no matter the Berry geometry phase or the Aharonov- Anandan (A-A)"geometry phase has the same ability against the stochastic fluctuations as their corresponding dynamics phases. And numerical results also justify that the Berry phase is more powerful to resist the external field fluctuation than that of the A-A phase. We believe that this distinction is caused by adiabatic approximation purely. Lastly, it is validated that the geometry quantum gates constructed by an orthogonal state scheme are more powerful. against the fluctuations.
出处
《量子电子学报》
CAS
CSCD
北大核心
2007年第4期469-474,共6页
Chinese Journal of Quantum Electronics
基金
国家自然科学基金(10474022
10204008)
教育部科学技术研究重点项目基金(205113)资助课题
关键词
量子信息
几何量子计算
涨落
正交态方法
quantum information
geometry quantum computation
fluctuation
orthogonal state method