期刊文献+

基于灵敏度分析的多学科设计优化解耦方法 被引量:12

Decoupling Method of Multidisciplinary Design Optimization Based on Sensitivity Analysis
下载PDF
导出
摘要 为了解决多学科设计优化耦合复杂性的难题,通过灵敏度分析,研究了复杂系统的耦合因素.提出了耦合强度的概念,给出了耦合因素的隶属度函数和判定耦合因素耦合强弱的准则,在此基础上提出了一种多学科设计优化的解耦方法.最后,给出了1个六杆机构多学科设计优化的实例,以验证解耦方法的有效性. To solve the coupling complexity of MD0 (multidisciplinary design optimization), coupling factors of a complex system were investigated based on the sensitivity analysis. The conception of coupling strength was presented, the membership degree function of coupling factors was defined with the method of fuzzy mathematics, and the judgment criteria of the coupling degree of coupling factors was given. Based on the conception and the judgment criteria, a decoupling method of MD0 was proposed. Finally, a six-bar mechanism was given as an example to demonstrate the validity of the proposed method.
出处 《西南交通大学学报》 EI CSCD 北大核心 2007年第5期563-567,共5页 Journal of Southwest Jiaotong University
基金 国家863计划项目(2003AA4Z3200) 德阳市重点科学技术研究项目
关键词 多学科设计优化 灵敏度分析 解耦 multidisciplinary design optimization sensitivity analysis decoupling
  • 相关文献

参考文献7

二级参考文献22

  • 1[1]Sobieszczanski-Sobieski J. Multidisciplinary aerospace design optimization: survey of recent developments[J].Structural Optimization,1997,14(1):1-23.
  • 2Braun R D, Kroo I. Use of the Collaborative Optimization Architecture for Launch Vehicle Design.Proceedings of 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WS,1996.
  • 3Alexandrov N, Kodiyalam S. Initial Results of an MDO Method Evaluation Study. Proceedings of 7th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Saint Louis,MO. 1998.
  • 4Alexandrov N, Lewis R M. Analytical Computational Aspects of Collaborative Optimization for Multidiscipliary Design. AIAA Journal, 2002, 40(2): 301-309.
  • 5Cormier T. Comparison of Collaborative Optimization to Conventional Design Teehniques for Conceptual RLV. Proceedings of 8th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA. 2000.
  • 6DeMiguel A V. Two Decomposition Algorithms for Noneonvex Optimization Problems with Global Variables : [Ph. D. Dissertation]. California :Stanford University, 2001.
  • 7Renaud J, Gabriele G. Approximation in Non--hierarchic System Optimization. AIAA Journal,1994, 32(1): 198-205.
  • 8Papila M, Haftka R T. Response Surface Approximations: Noise, Error Repair, and Modeling Errors. AIAA Journal, 2000, 38(12): 2336-2343.
  • 9Tappeta R V, et al. Multiobjective Collaborative Optimization[J]. J. of Mech Design. 1997,119(9):403~411
  • 10Balling R J, et al. Optimization of Coupled Systems:A Critical Overview of Approaches[J]. J. AIAA, 1996,34(1):6~17

共引文献44

同被引文献95

引证文献12

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部