期刊文献+

水稻幼苗耐Mn^(2+)胁迫的QTL及其互作检测 被引量:4

Analysis of QTLs with Additive and Epistasis Effects for Tolerance to High Mn^(2+)Stress at Seedling Stage in Rice
下载PDF
导出
摘要 用珍汕97B/密阳46构建RIL(recombinant inbred line)群体及其遗传图谱,采用纸培法育苗和培养,以基本营养液为对照(CK),100 mg/L Mn^(2+)为胁迫处理,用培养20d的幼苗感Mn^(2+)指数[(对照苗高-处理苗高)/对照苗高×100]作为评价指标,进行耐Mn^(2+)胁迫的主效应和上位性效应QTL检测。结果表明,RIL群体幼苗生长受Mn^(2+)胁迫的抑制作用明显,株系间对其胁迫反应差异较大。试验共检测到2个与耐Mn^(2+)胁迫有关的主效应QTL (qRMC-5和qRMC-6-2),表型贡献率分别为6.03%和6.82%,耐Mn^(2+)胁迫有效基因均来自于父本密阳46。试验还对幼苗耐Mn^(2+)胁迫的上位性互作进行分析,检测到5对上位性效应QTL,涉及第1、2、3、6、7、9和10等7条染色体,总表型贡献率达28.69%,表明幼苗耐Mn^(2+)胁迫的上位性QTL不仅普遍存在,且对耐Mn^(2+)有良好的效果。 A recombinant inbred line (RIL) population derived from Zhenshan 97B/Miyang 46 (ZS97B/MY46) and its genetic linkage map were employed to map QTL controlling tolerance to high Mn^2+ stress by treating the seedling with 100 mg/L MR^2+ concentration. The relative changes of seedling height was taken as Mn^2+ sensitivity index (SHMSI), which is calculated as (seedling height at CK-seedling height at high Mn^2+ stress)/seedling height at CK×100. The results indicated that high Mn^2+concentration severely inhibited the seedling from growing. Different lines responded differently to the high Mn^2+ stress. A total of two QTLs with significant additive effects conferring tolerance to high Mn^2+ stress were detected, i.e. qRMC-5 and qRMC-6-2. These two QTLs could explain 6.03% and 6.82% of the total phenotypic variations, respectively. Both of tolerant effects came from male parent, i. e. Miyang 46. In addition, a total of five pairs of additive×additive epistasis QTLs were significant for high Mn^2+ stress. All of five pairs could explain 28.69% of the total phenotypic variations. It is suggested that the epistasis effects should be common in controlling the tolerance to high Mn^2+ stress in rice seedling.
出处 《分子植物育种》 CAS CSCD 2007年第6期785-789,共5页 Molecular Plant Breeding
关键词 水稻 耐Mn^2+胁迫 QTL定位 上位性效应 Rice, Mn^2+ stress, QTLs mapping, Epistasis effects
  • 相关文献

参考文献19

  • 1Foy C.D., Chancy R.L., and White M.C., 1978, The physiology of metal toxicity in plants, Annu. Rev. Plant Physiol., 29: 511-566.
  • 2Foy C.D., Well R.R., and Coradetti C.A., 1995, Differential manganese tolerance of cotton genotypes in nutrient solution, J. Plant Nutr., 18(4): 685-706.
  • 3Gonzalez A., and Lynch J., 1999, Tolerance of tropical common bean genotypes to manganese toxicity: performance under different growing conditions, J. Plant Nutr., 223 (3): 511- 525.
  • 4Gregoflo G.B., Senadhira D., Mendoza R.D., Manigbas N.L., Roxas J.P., and Guerta C.Q., 2002, Progress in breeding for salinity tolerance and associated abiotie stresses in flee, Field Crops Research, 76(2): 91-101.
  • 5Kilo V., and Lighffoot D.A., 1996, Genetic analysis ofresistence to manganese toxicity in soybean using molecular markers soybean, Genetics Newsletter, 23:155-157.
  • 6黎晓峰,顾明华,白厚义,许芳隆.水稻锰毒与铁素营养关系的研究[J].广西农业大学学报,1996,15(3):190-194. 被引量:18
  • 7黎晓峰,陆申年,陈惠和,顾明华.铁锰营养平衡与水稻生长发育[J].广西农业大学学报,1995,14(3):217-222. 被引量:20
  • 8Quartin V., Ramalho J.C., and Nunesm A., 1998, Responses of biomass and several photosynthetic indicators to manganese excess in triticale, J. Plant Nutr., 21(8): 1615-1629.
  • 9胜见太,李思义.过量锰对水稻的影响与对策[J].土壤学进展,1990,18(2):39-41. 被引量:3
  • 10沈圣泉,庄杰云,舒庆尧,夏英武.水稻苗期耐高Cu^(2+)胁迫的QTL定位和上位性分析[J].植物营养与肥料学报,2006,12(3):352-357. 被引量:5

二级参考文献47

共引文献169

同被引文献64

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部