期刊文献+

掺Yb^3硼磷酸盐玻璃物理和光谱性能研究

Investigation on physical and spectroscopic properties of Yb^3+ doped borophosphate glasses
下载PDF
导出
摘要 通过熔融法制得了一种新型掺Yb^3+的(60-X)P2O5-xB2O3-40ZnO(x=5,10,15,20,25,30%(摩尔分数))系统激光玻璃,并分析了B2O3含量对玻璃结构、物理性能和光谱性能的影响。结果表明,随B2O3含量增加,玻璃由链状变为类似石英玻璃的三维网络结构,力学和热学性能逐步得到改善,并在20%(摩尔分数)B2O3时具有最佳值,当B2O3含量超过20%(摩尔分数)后,玻璃中[BO3]三角体含量开始增多,结构变得松散,力学和热学性能变差,当B203含量达到30%(摩尔分数)时玻璃发生了分相现象。随B2O3含量增加,积分吸收截面在3.77-4.11×10^4pm^3之间,受激发射截面在0.726-0.816pm^2之间,荧光寿命在0.903-0.965ms之间,增益系数在0.662-0.737pm^2.ms之间,最小泵浦强度在1.128-1.398kW/cm^2之间变化。这类硼磷酸玻璃有望成为高平均功率固体激光器的候选基质。 A series of Yb^3+ doped (60-x) P2O5-xB2O3-40ZnO (x= 5,10,15,20,25,30mol%) system glasses were prepared by means of conventional melt-quench method and the influence of B2O3 content on structure, physical and spectroscopic properties were investigated. The results show that the link-like structure of glass converts into quartz-like network structure with increasing B2O3 content, accordingly, mechanical and thermal properties are improved, and the optimal values are obtained at 20mol% B2O3. The content of [BO3] increase and mechanical and thermal properties decrease when B2O3 content is larger than 20mol%, and phase separation appears at 30mol% B2O3. With the increase of B2O3 content, integral absorption cross-section is between 3.77 and 4.11×10^4pm^3, stimulated emission cross-section is between 0.726 and 0.816 pm^2, fluorescence time is between 0.903 and 0.965ms, gain coefficient is between 0.662 and 0.737 pm^2.ms, and the minimum pumping intensity is between 1.128 and 1.398kW/cm^2. This kind of borophosphate glasses could be the candidate to be used in high average power solid state lasers.
出处 《功能材料》 EI CAS CSCD 北大核心 2007年第A01期47-51,共5页 Journal of Functional Materials
基金 基金项目:国防军工新材料资助项目(MKPT-05-240)
关键词 Yb^3+离子 P2O5-B2O3-ZnO系统 物理性能 光谱性能 Yb^3+ions P2O5-B2O3-ZnO system physical properties spectroscopic properties
  • 相关文献

参考文献25

  • 1Hughes D W, Bar J R M. [J]. J Phys (D), 1992, 25(4):563-586.
  • 2Dai Shixun, Hu Lili, et al. [J]. J Acta Optica Sinca, 2000,20(7): 995-999.
  • 3Karlsson G, Pasiskevicius V, Fraqemann A, et al. [J]. Proceedings of the SPIE-The International Society for Optical Engineering, 2003, 5137(1): 37-42.
  • 4Blaize S, Bastard L, Cassaqnetes C, et al. [J]. IEEE Photonics Technology Letters, 2003, 15 (4): 516-518.
  • 5Deloach L D, Payne S A, Chase L L, et al. [J]. IEEE J Quantum Electron, 1993, 29(24): 1179-1191.
  • 6John H. [J]. Glass Science and Technology, 1995, 68(3): 96-101.
  • 7Jiang Chun. [J]. Journal of Physics and Chemistry of Solids, 2000, 61(8): 1217-1223.
  • 8Paul R. [J]. Journal of the American Ceramic Society, 2002, 85(5): 1061-1069.
  • 9Toyoda S, Fujino S, Morinaga K. [J]. Journal of Non-Crystalline Solids, 2003, 321 : 169-174.
  • 10Shih P Y, Yung S W, Chin T S, et al. [J]. Journal of Non-Crystalline Solids, 1999, 244:211-222.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部