期刊文献+

石英衬底上生长的立方相Zn1-xMnxO薄膜及其光学、磁学特性

Optical and magnetic properties of cubic Zn1-xMnxO thin films grown on quartz substrates
下载PDF
导出
摘要 采用电子束反应蒸发法,(MnO)y(ZnO)1-y(y≥0.3)陶瓷靶作为蒸发源,高心含量的Ar/O2混合气为反应气体,在石英玻璃衬底上生长得到Mn含量超过50%(原子分数)的Zn1-xMnxO薄膜。场发射扫描电子显微镜和X射线衍射测量显示x〉O.5的Zn1-xMnxO薄膜呈单一晶相的立方相、岩盐矿结构。这与采用abinifio方法计算得到的结果一致(作为简化,计算时未考虑Mn的自旋的影响),即对于x≥0.5的Zn1-xMnxO材料体系,其取类MnO的立方岩盐矿结构比取类ZnO的六方相纤锌矿结构更稳定。对石英玻璃基Zn1-xMnxO薄膜的紫外.可见透射光谱测量表明,随着Mn含量从0增大到0.68,Zn1-xMnxO薄膜的光学带隙从3.35eV增大到5.02eV.磁性测量结果表明,所制备立方Zn0.32Mn0.68O薄膜在室温下没有表现出宏观磁性. We report on the reactive electron beam evaporative growth of single-phase cubic Zn1-xMnxO films on quartz substrates using polycrystalline (MnO)y(ZnO)1-y(y≥0.3) ceramic target as source material. The growth was carded out in the environment of Ar/O2 gas mixture with the volume ratio of Ar : 02 in the range 1:1~3. 1. Field emission scanning electron microscopy (FESEM) revealed unique surface morphology of cubic Zn1-xMnxO film compared with that of hexagonal one. X-ray diffraction (XRD) measurements revealed that Zn1-xMnxO films are of single hexagonal phase, single cubic phase and mixed h+c phase, corresponding to x=0.25 (as well as that of x=0.12), x=0.68 and x=0.47, respectively. Such XRD results are consistent with the data obtained from ab initio calculations, i.e., for the Zn1-xMnxO system with x≥0.5, cubic rock salt structure is more stable compared with that of hexagonal wurtzite structure. UV-vis transmission investigations demonstrated that the band gap of Zn1-xMnxO film broadened from 3.35 to 5.02eV along with the increase of Mn content from 0 to 0.68. However, no ferromagnetism is found at room temperature for cubic Zn0.32Mn0.68O film.
出处 《功能材料》 EI CAS CSCD 北大核心 2007年第A03期1010-1013,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(50472058).
关键词 电子束反应蒸发 立方Zn1-xMnxO薄膜 光学和磁学特性 electron beam evaporation cubic Zn1-xMnxO film optical and magnetic properties
  • 相关文献

参考文献12

  • 1Ohno H. [J]. Science, 1998, 281: 951-956.
  • 2Sharma P, Gupta A, Rao K V, et al. [J]. Natural Materials, 2 673-677.
  • 3Liu X J, Song C, Zeng F, et al. [J]. Appl Phys, 2007, 40: 1608-1613.
  • 4Dietl T, Ohno H, Matsukura F. [J]. Science, 2000, 287: 1019-1022.
  • 5Jung S W, An S J, Yi G C, et al. [J]. Applied Physics Letters, 2002, 80: 4561-4563.
  • 6Fukumura T, Jin Z, Kawasaki M, et al. [J]. Applied Physics Letters, 2001, 78: 958-960.
  • 7Ivill M, Pearton S J, Norton D P, et al. [J]. Journal of Applied Physics, 2005, 97:053904 (5 pages).
  • 8Chikoidze E, Dumont Y, Jomard F, et al. [J]. Journal of Applied Physics, 2005, 97:10D327 (3 pages).
  • 9Cheng X M, Chien C L. [J]. Journal of Applied Physics, 2003, 93: 7876-7878.
  • 10Viswanatha R, Sapra S, Gupta S S, et al. [J]. Journal of Physical Chemistry B, 2004, 108:6303-6310.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部