期刊文献+

Ni(111)(√3×√3)R30°表面吸附Sn和Pb的第一性原理研究

Sn and Pb adsorption on Ni(111)(√3×√3)R30° surface: A density functional theory study
下载PDF
导出
摘要 用第一性原理的自旋密度泛函理论计算了Sn和Pb吸附在Ni(111)(√3×√3)R30°表面的几何构型和功函变化。能量计算表明Sn和Pb吸附在(111)(√3×√3)R30°表面形成的最稳定相均是替代吸附,并不存在类似于Sb吸附于Cu(111)(√3×√3)R30°和Ag(111)(√3×√3)R30°。表面时形成的层错现象,验证了以前的实验结果。对于Sn和Pb吸附在Ni(111)(√3×√3)R30°表面形成的最稳定表面合金相,表面弛豫效应都不明显,皱褶幅度分别为0.0548和0.0987nm,都比硬球模型所预言的小,表明Sn-Ni和Pb-Ni金属键含有大量的共价键成分。计算所得的几何参数与实验符合得很好。Sn和Pb在Ni(111)(√3×√3)R30°表面吸附前后的功函变化值分别为0.38和0.433eV,表示电荷均从底物移向吸附物。 The geometry property and work-function change of Sn and Pb adsorption on Ni(111)(√3×√3)R30° surface were investigated by using the density functional theory method of first-principles. Total energy calculations show that substitutional surface alloy phases in the outermost layer are preferable for Sn and Pb adsorption on Ni(111)(√3×√3)R30° surface, and they have no stacking fault like that found for similar phases of Sb on Cu(111) and Ag(111). It confirmed the earlier experiments. In the case of the most stable surface alloy phases for Sn and Pb adsorption on Ni(111)(√3×√3)R30° surface, the relaxation effects are marginal and the rumpling magnitudes are 0.0548 and 0.0987nm, respectively. They are smaller than the predictions from hard-sphere model, indicating of the covalent character in the bonds of Sn-Ni and Pb-Ni. Main structural parameters from experimental results are reproduced by our calculations. The changes of work-function due to Sn and Pb adsorption were found to be 0.38 and 0.43 eV for the Ni(111)(√3×√3)R30° surface, respectively. It shows that the charge is transformed from the substrate to the adsorbates.
出处 《功能材料》 EI CAS CSCD 北大核心 2007年第A07期2796-2799,共4页 Journal of Functional Materials
关键词 密度泛函理论 表面合金 锡化镍 铅化镍 层错 功函变化 density functional theory surface alloys NiSn NiPb stacking faults work-function change
  • 相关文献

参考文献26

  • 1Everett E C, Candace T S, Charles J O. [J]. J Appl Phys, 2006, 85:5184.
  • 2陈国良.金属间化合物结构材料研究现状与发展[J].材料导报,2000,14(9):1-5. 被引量:76
  • 3Quinn P D, Bittencourt C, Brown D, et al. [J]. J Phys: Condens Matter, 2002, 14:665.
  • 4Li Y D, Jiang L Q, Koel B E. [J]. Phys Rev B, 1994, 49: 2813.
  • 5Wu S C, Lu S H, Wang Z Q, et al. [J]. Phys Rev B, 1988, 38: 5363.
  • 6Harrison M J, Woodruff D P, Robinson J. [J]. Surf Sci, 2004, 572: 309.
  • 7Woodruff D P, Robinson J. [J]. Appl Surf Sci, 2003, 219: 1.
  • 8Overbury S H, Ku Y S. [J]. Phys Rev B, 1992, 46: 7868.
  • 9Ku Y S, Overbury S H. [J]. Surf Sci, 1992, 273: 341.
  • 10Soares EA, Bittencourt C, Lopes E L, et al. [J]. Surf Sci, 2004, 550: 127.

二级参考文献41

  • 1陈国良,有序金属间化合物结构材料物理金属学基础,1999年
  • 2WB,中国航空材料手册.2,1989年
  • 3WB,863先进材料专家组资料
  • 4WB,国家自然科学基金委员会材料学部资料
  • 5Price D L, Wills J M and Cooper B R 1996 Phys. Rev. Lett. 773375.
  • 6Kobayashi K 2001 Surf. Sci. 493 665.
  • 7Tan K E, Horsfield A P, Manh D N, Pettifor D G and Sutton A P 1996 Phys. Rev. Lett. 76 90.
  • 8Zhang Y F and Li J Q 2003 J. Chin. Chem. Soc. 50 517.
  • 9Saunders V R, Dovesi R, Roetti C, Causa M, Harrison N M,Orlando R and Zicovieh-Wilson C M 1998 CRYSTAL98 User' s Manual (Torino: University of Torino).
  • 10Zhang Y F, Li J Q and Zhou L X 2001 Surf. Sci. 488 256.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部