期刊文献+

三维Leibniz代数的分类 被引量:6

Classification of 3-Dimensional Leibniz Algebras
下载PDF
导出
摘要 Leibniz代数是比Lie代数更广泛的一类代数,它通常不满足反交换性.在这篇文章里我们确定了维数等于3的Leibniz代数的同构类. Leibniz algebras are noncommutative generalizations of Lie algebras. In this paper, all 3-dimensional Leibniz algebras are determined up to isomorphism.
作者 蒋启芬
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第4期677-686,共10页 数学研究与评论(英文版)
基金 上海市科委资助(06ZR14049) 上海交通大学系友基金
关键词 LEIBNIZ代数 LIE代数 幂零Leibniz代数 可解Leibniz代数 理想 Leibniz algebras nilpotency solvability ideal.
  • 相关文献

参考文献10

  • 1BLOCH A. On a generalizatlon of Lie algebra [J]. Math in USSR Doklady, 1965, 165(3): 471-473.
  • 2LODAY J L. Cyclic Homology [M]. Springer-Verlag, Berlin, 1992.
  • 3LODAY J L. Une version non commutative des algébres de Lie: les algébres de Leibniz [J]. Enseign. Math. (2), 1993, 39(3-4): 269-293. (in French)
  • 4LODAY J L, PIRASHVILI T. Universal enveloping algebras of Leibniz algebras and (co)homology [J]. Math. Ann., 1993, 296(1): 139-158.
  • 5LODAY J L. Kuneth-style formula for the homology of Lelbnlz algebras [J]. Math. Z., 1996, 221(1): 41-47.
  • 6PIRASHVILI T. On Leibniz homology [J]. Ann. Inst.Fourier (Grenoble), 1994, 44(2): 401-411.
  • 7AYUPOV SH A, OMIROV B A. On Leibniz Algebras [M]. Algebra and Operator Theory (Tashkent, 1997),1-12, Kluwer Acad. Publ., Dordrecht, 1998.
  • 8AYUPOV SH A, OMIROV B A. On some classes of nilpotent Leibniz algebras [J]. Sibirsk. Mat. Zh., 2001,42(1): 18-29. (in Russian)
  • 9ALBEVERIO S, AYUPOV SH A, OMIROV B A. On nilpotent and simple Leibniz algebras [J]. Comm. Algebra, 2005, 33(1): 159-172.
  • 10HUMPHREYS J E. Introduction to Lie Algebras and Representation Theory [M]. Springer-Verlag, New York-Berlin, 1972.

同被引文献40

  • 1任斌.具有拟filiform根基的可解完备李代数的自同构群(英文)[J].苏州科技学院学报(自然科学版),2006,23(3):1-4. 被引量:4
  • 2BLOCH A. On a generalization of Lie Algebra [J]. Math in USSR Doklady, 1965, 165(3): 471-473.
  • 3LODAY J L. Cyclic Homology [M]. Berlin: Springer-Verlag, 1992.
  • 4LODAY J L, Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)homology [J]. Mathematische Annalen, 1993, 296(1): 139-158.
  • 5LODAY J L. Kunneth-style formula for the homology of Leibni~ algebras [J]. Mathematics Zeitschrift, 1996, 221(1): 41-47.
  • 6PIRASHVILI T. On Leibniz homology [J]. Annales De L'Institut Fourier, 1994, 44(2): 401-411.
  • 7AYUPOV A SH, OMIROV B A. On Leibniz algebra [C]. Algebra and Operator Theory Proceeding of the Collo- quium in Tashkent, 1997: 1-12.
  • 8AYUPOV ASH, OMIROV B A. On some classes of nilpotent Leibniz algebra [J]. Siberian Mathematical, 2001, 42(1): 15-24.
  • 9ALBEVERIO S, AYUPOV A SH, OMIROV B A. On nilpotent and simple Leibniz algebra [J]. Communications in Algebra, 2005, 33(1): 159-172.
  • 10KURDIANI R, PIRASHVILI T. A Leibniz Algebra Structure on the Second Tensor Power[J]. Journal of Lie Theory, 2002: 583-596.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部