摘要
设V是一个n维线性空间,V_x^m(G)为V上的张量对称类.A为V的线性算子T的矩阵,K(A)为V_x^m(G)上的诱导线性算子K(T)的矩阵.本文从K(A)的数值半径Υ(K(A))和可分数值半径Υ_x(K(A))定义出发,研究了Υ(K(A))、Υ_x(K(A))与范数||A||_p(1≤p≤2)、广义矩阵函数d_x^G(A)的关系,得到了它们之间的两个不等式.
Let V be an n-dimensional linear space and Vχ^m(G) be a subspace of ×^mV, called the symmetry class of tensors over V associated with G and χ. Suppose A is a matrix of the linear operator T acting on V and K(A) is a matrix of the induced operator K(T) acting on Vχ^m(G). Form definition of the numerical radius τ(K(A)) and decomposable numerical radius τχ(A), two matrix inequalities involving the numerical radius τ(K(A)), the decomposable numerical radius τχ(A), the norm ||A||2 and the generalized matrix function dχ^G(A) are obtained.
基金
湖北省教委重点科研项目(2004X157)
关键词
张量对称类
诱导线性算子
数值半径
symmetry class of tensors
induced operator
numerical radius.