期刊文献+

一类微分方程系统正平衡解的存在性与全局稳定性 被引量:2

Existence and Global Stability of Positive Equilibrium Point to a System of Differential Equations
下载PDF
导出
摘要 本文研究了一个自治的非线性微分方程系统,得到了系统正平衡点存在唯一的充分条件,通过伸缩变换法讨论了正平衡点局部稳定性,并运用构造Liapunov函数方法得到了它的全局渐近稳定性. This paper deals with an autonomous nonlinear system of differential equations. We obtain the existence-uniqueness of positive equilibrium point to the problem, and then establish the local stability and the global asymptotic stability of the positive equilibrium point by means of the stretching method and the Liapunove function method, respectively.
作者 刘婧 马雁
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第4期819-825,共7页 数学研究与评论(英文版)
基金 辽宁省教育厅高等学校科学研究项目(2005078)
关键词 食物链模型 正平衡点 伸缩变换 LIAPUNOV函数 全局渐近稳定 food chain model positive steady-state stretching Liapunov function global asymptotical stability.
  • 相关文献

参考文献6

二级参考文献17

  • 1Smith H I.Competitive coexistence in an oscillating Chemostat[J].SIAM J Appl Math,1981,40(3):498-521.
  • 2Baxley J V,Robinson S B.Coexistence in the unstirred Chemostat[J].Appl Math Compt,1998,89(1):41-65.
  • 3Hsu S B,Waltman P.On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat[J].SIAM J Appl Math,1993,53(4):1026-1044.
  • 4Dung L,Smith H L.A parabolic system modeling microbial competition in an unmixed bio-reactor[J].Differential Equations,1996,130(1):59-91.
  • 5Bally M,Dung L,Jones D A,Smith H L.Effects of random motility on microbial growth and competition in a flow reactor[J].SIAM J Appl Math,1998,59(4):573-596.
  • 6Baxley J V,Thompson H B.Nonlinear boundary value problems and competition in the Chemostat[J].Nonlinear Anal,1994,22(3):1329-1344.
  • 7Boer M P,Kooi B W,kooijman S A L M.Food chain dynamics in the Chemostat[J].Math Biosci,1998,150(1):43-62.
  • 8Kooi B W,Boer M P,kooijman S A L M.Pesistance of a food chain to invasion by a top predator[J].Math Biosci,1999,157(4):217-236.
  • 9Vayenas D V,Pavlou S.Chaotic dynamics of a microbial system of coupled food chains[J].Ecological Modelling,2001,136(2):285-295.
  • 10Smoller J.Shock Waves and Reaction Diffusion Equations[M].Springer-Verlag,New York,1993.

共引文献14

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部