期刊文献+

凸模糊映射的共轭映射 被引量:4

Conjugate Mapping of Convex Fuzzy Mapping
下载PDF
导出
摘要 本文在Goetschel和Voxman所建立的拓扑向量空间中引入了反模糊数的概念,并建立了反模糊数空间,讨论了有关的基本性质.在此基础上,引入了凸模糊映射的共轭映射的定义,并证明了凸模糊映射的共轭集合和共轭映射都是凸的. In this paper, the notion of anti-fuzzy number is introduced in the topological vector space constructed by Goetschel and Voxman, anti-fuzzy number space is established, and some basic properties are discussed. Based on the above discussion, the definition of conjugate mapping of convex fuzzy mapping, and the convexities of conjugate set and conjugate mapping of convex fuzzy mapping are investigated.
作者 张成 袁学海
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第4期839-844,共6页 数学研究与评论(英文版)
基金 辽宁省科学技术基金(20052146) 大连大学博士基金
关键词 模糊数 反模糊数 凸模糊映射 共轭映射 fuzzy numbers anti-fuzzy number convex fuzzy mappings conjugate mapping.
  • 相关文献

参考文献4

  • 1WALK M. Theory of Duality in Mathematical Programming [M]. Springer-Verlag, Vienna, 1989.
  • 2GOETSCHEL K JR, VOXMAN W. Elementary fuzzy calculus [J]. Fuzzy Sets and Systems, 1986, 18(1): 31-43.
  • 3SYAU Y It. Invex and generalized convex fuzzy mappings [J]. Fuzzy Sets and Systems, 2000, 115(3): 455-461.
  • 4WANG Gui-xiang, WU Cong-xin. Directional derivatives and subdifferential of convex fuzzy mappings and application in convex fuzzy programming [J]. Fuzzy Sets and Systems, 2003, 138(3): 559-591.

同被引文献28

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部