期刊文献+

双锥腔互补偿型绝对辐射计 被引量:15

Dual cavity inter-compensating absolute radiometer
下载PDF
导出
摘要 介绍了一种双锥腔互为补偿的新型绝对辐射计(DCICAR)。采用和导热帽檐一体成型的锥腔,微型铂电阻作温度传感器,双锥腔肩并肩放置,面对相同的视场和热环境,且一直维持相同的温度,传导、对流和热耗散情况相同,以互为补偿方式工作。测量结果表明:测量重复性可达0.05%,用参加2005年在世界辐射中心(WRC)举办的第十届国际日射计比对IPC-X的SIAR-2c作为传递基准,本文研制的DCICAR的A#通道相对世界辐射参考(WRR)的校正因子为0.99973,B#通道的校正因子为0.99917,均与WRR在0.1%以内相符。该仪器提高了双腔补偿效果,且灵敏度高,时间常数小,双腔测量结果可相互比对验证,降低了绝对辐射计的测量不确定度。 A new type absolute radiometer, named Dual Cavity Inter-Compensating Absolute Radiometer(DCICAR)was constructed. A conical cavity of DCICAR is fabricated as a whole body by combined the conical part with the cap brim for heat conduct and a Pt resistance is used as temperature sensor. The DCICAR works in a mode of inter-compensated when the two cavities are put side by side and faced the same field of view(FOV), also kept the same states of heat conducting,convection, dissipation and heat sink in the same temperature environment. The two cavities are always heated in the same temperature through the whole measurement process. Experimental results show that the repetition of DCICAR is better than 0.05%. By taking the SIAR-2c (Solar Irradiance Absolute Radiometer) as transfer standard demonstrated in the Tenth International Pyrheliometer Comparisons (IPC-X) organized by World Radiation Center (WRC) at Switzerland in 2005, the correct factor of channel A of DCICAR relatively to World Radiation Reference(WRR) is 0. 999 73, and the channel B of 0. 999 17. So DCICAR can be well coincident with WRR in 0.1%. It concludes that the compensation effect of DCICAR is improved with a short time constant and high sensitivity. The measurement results from two cavities could be compared and validated with each other.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2007年第11期1662-1667,共6页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.40675083)
关键词 辐射测量 双锥腔互补偿 绝对辐射计 比对 radiation measurement Dual Cavity Inter-Compensation (DCIC) absolute radiometer comparison
  • 相关文献

参考文献12

二级参考文献27

  • 1禹秉熙,方伟,王玉鹏.卫星宽视场绝对辐射计太阳越过视场时入射光变化与腔温响应函数[J].光学精密工程,2004,12(4):353-358. 被引量:16
  • 2禹秉熙,姚海顺,方伟.绝对辐射计预测辐射电补偿的快速测量方法[J].光学学报,2005,25(6):786-790. 被引量:15
  • 3Hickey J R, Alton B M, Kyle H L. Total solar irradiance measurements by ERB/Nimbus 7, a review of nine years. Space Sci. Rev., 1988, 48:321-342.?A
  • 4Willson R C, Hudson H S. Solar luminosity variation in solar cycle 21. Nature. 1988, 332:810-812.?A
  • 5Robert B L, Barkstrom B R, Robert D C. Characteristics of the earth radiation budget experiment solar monitors. Appl. Opt. 1987, 26(15):3090-3096.?A
  • 6Chapman G A. Variations in total solar irradiance during solar cycle 22. J. Geophys. Res., 1996,101(A6):13 541-13 548.?A
  • 7Crommelynck D, Domingo V, Frohlich C. The Solar Variations (SOVA) experiment in the EURECA space platform. Adv. Space Res., 1991, 11(4):83-87.
  • 8Willson R C. Irradiance observations of SMM, Spacelabl, UARS, and ATLAS experiments. The Sun as a Variable Star: Solar and Stellar Irradiance Variations. New York: Cambridge University Press,1994. 54-62.?A
  • 9Frohlich C. First results from VIRGO, the experiment for helioseismology and solar irradiance monitoring on SOHO. Solar Phys., 1997, 170:1-25.?A
  • 10Willson R C, Helizon R. EOS/ACRIM Ⅲ Instrumentation. SPIE, 1999, 3750:233-242.?A

共引文献47

同被引文献58

引证文献15

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部