期刊文献+

含界面层圆形夹杂的平面热弹性问题

Plane thermoelastic problem for circular inclusion with interphase layer
下载PDF
导出
摘要 研究了无穷远均匀拉伸条件下,含界面层圆形弹性夹杂的平面热弹性问题。运用Muskhelishvili复势理论的级数展开技术,将各区应力函数展开为合适的Taylor和Laurent级数,考虑边界上的力和位移连续性条件,将问题转化为线性方程组的求解,数值分析表明:总体上,软界面层可以有效的减小夹杂和基体的界面应力集中;硬界面层可以减小夹杂内的界面应力集中,但却增加了基体内的界面应力集中;此外,总体上,界面相热膨胀系数较基体相和夹杂相过高,不利于降低界面应力集中。 The plane thermoelastic problem for circular inclusion with interphase layer under the coupled action of uniformly mechanical loads and temperature loads is investigated. By applying the technique of series expansion in the complex potential theory established firstly by Muskhelishvili in conjunction with the boundary conditions, the stress potentials in the form of Taylor and Laurent series for every region are written, then the problem will be reduced to solve a set of linear algebraic equations. Numerical results indicate that the soft interphase layer can effectively decrease the surface stress concentration inside inclusion and matrix; The hard interphase layer can also effectively decrease the surface stress concentration inside inclusion, however the reverse effectiveness will appear inside matrix; In general, the increasing of the thermal expansion coefficient of interphase layer relative to inclusion and matrix is disadvantage to reduce the surface stress concentration.
出处 《功能材料》 EI CAS CSCD 北大核心 2007年第A10期4132-4136,共5页 Journal of Functional Materials
基金 国家重点自然科学基金资助项目(50539080) 国家面上基金资助项目(50574053)
关键词 界面层 平面热弹性 复势理论 级数展开 应力集中 interphase layer plane thermoelasticity the theory of complex potentials series expansion stress concentration
  • 相关文献

参考文献11

  • 1Muskheilishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Groningen: Noorhoff, 1953.
  • 2Hardiman N J. [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1954, 7:226-230,
  • 3Eshelby J D. [J]. Proceedings of the Royal Society, Series A, 1957, 241:376-396.
  • 4Honein T, Hermann G. [J]. J Apple Mech, 1990, 57: 850-856.
  • 5刘又文,蒋持平.含圆形弹性夹杂的反平面问题[J].中南矿冶学院学报,1991,22(2):196-201. 被引量:4
  • 6张宏图 王锐.中国科学:A辑,1985,22:921-927.
  • 7Kattis M A, Meguid S A. [J]. J Appl Mech, 1995, 62:7-12.
  • 8Shen H, Schiavone P, Ru C Q, et al. [J]. Int J Solids Struct, 2001, 34: 7587-7606.
  • 9Shen H, Schiavone P, Potapenko S. [J]. Mechanics of Materials, 2005, 37: 663-675.
  • 10陈勇,宋迎东,高德平,范绪箕.热、机械载荷作用下夹杂对应力强度因子的影响[J].计算力学学报,2005,22(6):776-779. 被引量:8

二级参考文献26

  • 1[1]Shinozuka, M., Monte carlo solution of structural dynamics[J], Int J of Comput and Struc, 1972, 2:855~874
  • 2[2]Shinozuka, M. and Jan, C. -M., Digital simulation of random processes and its applications[J], J of Sound and Vibation, 1972, 25:111~128
  • 3[3]Gersch, W. and Yonemoto, J., Synthesis of multi-variate random vibration systems: A two-stage least square ARMA Model approach[J], J of Sound and Vibration, 1977, 52: 553~565
  • 4[4]Elishakoff. I., Buckling of a stochastically imperfect finite column on a nonlinear elastic foundation[J], J of Appl Mech, ASME, 1979, 46:411~416
  • 5[5]Shinozuka, M. and Sato, Y., Simulation of nonstationary random process[J], J of Eng Mech, ASCE, 1967, 93:11~40
  • 6[6]Yang, J. N., Simulation of random envelope processes[J], J of Sound and Vibration, 1972, 21:73~85
  • 7[7]Shinozuka, M. and Deodatis, G., Stochastic processes and their digital simulation[M], Oxford University Press, 2000
  • 8[8]Bracewell, R. N., The fast hartley transform[A], Proc of the IEEE[C], 1984,72:1010~1018
  • 9[9]Bracewell, R. N., The Hartley Transform[M], Oxford University Press, 1986
  • 10[10]Priestley, M. B., Spectral analysis and time series[M], Academic Press, 1981

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部