期刊文献+

薄膜厚度对LiMn2O4薄膜性质的影响

Influence of thickness on the properties of solution-derived LiMn2O4 thin films
下载PDF
导出
摘要 采用溶液沉积法制备不同厚度的LiMn2O4薄膜,用x射线衍射及扫描电子显微镜检测和分析薄膜的物相及形貌;采用恒电流充放电及交流阻抗技术研究LiMn2O4薄膜的电化学性质。结果表明不同厚度的LiMn2O4薄膜均匀,晶粒大小相近,晶粒尺寸在20-50nm之间。当放电电流密度为100μA/cm^2时,不同厚度的LiMn2O4薄膜比容量相差不大,其值在42-47μAh/(cm^2.μm)之间。薄膜循环性能随着薄膜厚度的增加而变差,经50次循环后,薄膜每次循环的容量损失从0.18μm的0.012%升高到1.04μm的0.16%。电化学阻抗表明不同厚度的LiMn2O4薄膜的锂离子扩散系数差别不大,数量级为10^-11cm^2/s。 LiMn2O4 thin films of different thickness were prepared by solution deposition. The phase identification and surface morphology were studied by X-ray diffraction and scanning electron microscopy. The electrochemical properties of thin films were carried out by galvanostatic charge-discharge experiments and electrochemical impedance spectroscopy. The films of different thickness are homogeneous with the grain size between 20 and 50rim. The specific capacity of the films is between 42 and 47μAh/(cm^2.μm) at the discharge current density of 100μAh/cm^2. The capacity loss per cycle increases from 0.012% to 0.16% after being cycled 50 times as the thickness of thin film increases from 0.18μm to 1.04μm. The diffusion coefficients of lithium ion in the films of different thickness are close with the order of 10^-11cm^2/s.
出处 《功能材料》 EI CAS CSCD 北大核心 2007年第A04期1401-1404,共4页 Journal of Functional Materials
基金 基金项目:湖南省自然科学基金资助项目(04JJ40038)
关键词 锂离子 薄膜 扩散 电化学阻抗 lithium ion thin films diffusion electrochemistry
  • 相关文献

参考文献15

  • 1Bates J B, Dudney N J, Neudecker B, et al.[J]. Solid State Ionics, 2000, 135: 33-45.
  • 2Kim H K, Seong T Y, Yoon Y S. [J]. Thin Solid Films, 2004, 447-448: 619-625.
  • 3Choi W G, Yoon S G. [J]. J Power Sources, 2004, 125: 236-241.
  • 4Liao C L, Lee Y H, Yu H C, et al. [J]. Electrochimica Acta, 2004, 50: 461-466.
  • 5Rho Y H, Kanamura K. [J]. J Electroanal Chem, 2003, 559: 69-75.
  • 6Das S R, Istevao R, Fachini S B, et al. [J]. J Power Sources, 2006,158(1): 518-523.
  • 7Shih F Y, Fung K Z. [J]. J Power Sources, 2006, 159(2): 1370-1376.
  • 8Dokko K, Anzue N, Mohamedi M, et al. [J]. Electrochem Commun, 2004, 6: 384-386.
  • 9Moon H S, Park J W. [J]. J Power Sources, 2003, 119-121: 717-720.
  • 10Chung K Y, Kim K B. [J]. Electrochimica Acta, 2004, 49(20): 3327-3337.

二级参考文献11

  • 1Minoru I,Takayuki D,Yasutoshi I,et al.[J].J Power Sources,1999,81:554.
  • 2Chen C H,Kelder E M,Schoonan J.[J].J Power Sources,1997,68:337.
  • 3Mohamedi M,Takahashi D,Uchiyama T,et al.[J].J Power Sources,2001,93:93.
  • 4West W C,Whitacre J F,Lim J R.[J].J Power Sources,2004,126:134.
  • 5Lee S J,Bae J H,Lee H W,et al.[J].J Power Sources,2003,123:61.
  • 6Moon H S,Park J W.[J].J Power Sources,2003,119-121:717.
  • 7Yoon Y S,Kim J S,Choi S H.[J].Thin Solid Films,2004,460:41.
  • 8Jones S D,Akridge J R.[J].J Power Sources,1995,54:63.
  • 9Bates J B,Dudney N J,Neudecker B,et al.[J].Solid State Ionics,2000,135:33.
  • 10Park Y J,Kim J G,Kim M K,et al.[J].J Power Sources,1998,76:41.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部